

Flow dependence of the parameters of the transient storage model

Steve Wallis

Heriot-Watt University Edinburgh, UK

Russell Manson

Stockton University New Jersey, USA

Content

- Transient storage model
- River Brock experiments
- Calibration of transient storage model
- Flow dependence of model parameters
- Conclusions and further work

- River pollution modelling
 - Given information on pollutant concentrations at an upstream location, predict future conditions at one or more locations downstream
 - Several approaches developed since 1960s:
 - Advection-dispersion
 - Transient storage
 - Aggregated dead zone
 - Unitized peak
 - Similarity

- Stream ecology
 - An interest in improving the health of riverine ecosystems has driven recent studies on stream metabolism and nutrient cycling
 - Transient storage zones are key locations for promoting the bio-geochemical conditions required to maintain good ecological status
 - Hence, using the Transient Storage Model to estimate the transient storage characteristics of rivers has become a popular strategy

- Aims of presentation
 - Introduce the Transient Storage Model
 - Illustrate how the model's parameters vary with river flow rate using River Brock tracer data
 - Very few previous such studies
 - Hart et al 1999 (20)
 - Gooseff et al 2003 (3)
 - Jin & Ward 2005 (15)
 - Camacho & Gonzalez 2008 (6)

- Transport: advection-dispersion in main channel
- Storage: trapping in, and exchange with, peripheral zones

Transient Storage Model

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2} + k_1 (S - C)$$

$$\frac{\partial S}{\partial t} = -k_2(S-C)$$

- C pollutant concentration in main channel
- S pollutant concentration in storage zones
- U flow velocity in main channel
- **D** dispersion coefficient in main channel
- k₁ pollutant exchange rate (main channel to storage zones)
- k₂ pollutant exchange rate (storage zones to main channel)
- x longitudinal space co-ordinate
- t time

Transient Storage Model

Reality check

• Study site

• Study reach

• Study reach

- Study reach
 - Length 128 m
 - Mean width 8.5 m
 - Mean slope 0.006
- Tracer experiments
 - 25 experiments
 - Short-duration release of Rhodamine WT
 - Concentration-time profiles observed in main channel at both ends of reach
 - Flow rate range: 300 2000 L/s
 - Sampling interval 15 s

HERIOT

WATT

HERIO

- Parameter optimisation
 - Downstream temporal concentration profile simulated by the TSM was fitted to the corresponding observed profile
 - Modified Levenberg-Marquardt algorithm
- Typical fit

Results from all experiments

Results from all experiments

Values and trend consistent with most previous studies

HERIO

- Reliability check
 - Analysis of TSM equations reveals a relationship between the centroid velocity, U_c, and the main channel velocity, U

 $U_c = U/(1 + A_s/A)$

- Initial conclusions
 - TSM parameters appear to be sound; values and variation with flow rate being consistent with most previous work
 - Dispersion coefficient behaviour is unusual
- Further work
 - Sensitivity to discretisation
 - Sensitivity to profile tails
 - Predictive model
 - Empirical equations for parameters
 - 3 parameter model