EXPERIMENTAL STUDY ON GABION STEPPED SPILLWAY

M.Shafai-Bejestan

Professor, College of Science and Water Engrg. Shahid - Chamran University Ahwaz Iran. m-shafai@scu.ac.ir

Gh.Kazemi-Nasaban

Former Graduate Stud., College of Science and Water Engrg ., Ahwaz, Iran Ghkazemnasaban@yahoo.com

CONTENT OF THIS PRESENTATION

- Introduction
- Purpose of this study
- Experimental set-up
- Results
- Conclusions

Introduction

- Rocks have been used in dam construction, river engineering works, river intakes
- The rock size is important criteria in design which depends on flow characteristics
- When adequate size is not available, gabions are used
- Gabions are hexagonal mesh boxes filled with small sizes of stone. The advantage of gabion are a) their stability b)low cost c) flexibility d)porosity (Chinnarasri, et al. 2003).

Introduction-continued

- The gabion have been used for hydraulic engineering works such as revetments, channel linings, weirs, groins and energy dissipation structures (Stephenson, 1979)
- One application of gabion is for constructing the stepped spillways

Introduction-continued

 Three types of flow occur in gabion stepped spillway: a) "napped flow" when flow cascade from one step to another, b) "skimming flow", when the water fully flow through the steps and c) "pooled flow" when a step is provided at the end of each step

Introduction-continued

Empirical equations have been developed to distinguish three types of flow.

Type of flow	Formula	Author (s)
Nape flow	$\frac{y_c}{\hbar} = 0.092(\frac{\hbar}{\ell})^{-1.276}$	Chanson (1994)
	$\frac{y_c}{\hbar} = 0.89 - 0.4(\frac{\hbar}{\ell})$	Chanson (2001)
	$\frac{y_c}{\hbar} = 0.80 - (0.55)(\frac{\hbar}{\ell})$	Chinnarasri (2003)
Skimming flow	$\frac{y_c}{\hbar} = 0.862(\hbar/\ell)^{-0.165}$	Yasuda and Ohtsu (1999)
Pooled flow	$\frac{y_c}{\hbar} = [0.55 - 0.16Ln(\frac{\hbar}{\ell})]^6$	Aigner (2004)

Table 1 : Formula for distinguish of three types of flow

• Energy dissipation in stepped spillway

 Kazemi- Nasaban (1996) and Peyras et al.(1992)

Table 2 : Values of coefficients of a and b in Eq. (1)

Slope $(\hbar:\ell)$	а	ъ
1:1	0.238	-0.526
2:1	0.169	-0.654
3:1	0.208	-0.647
3.5:1	1.736	-0.279

• Aigner (2004) developed the following formula:

$$\frac{\Delta E}{H_{\text{max}}} = \frac{\frac{H}{y_c}}{\frac{H}{y_c} + 1.5}$$

- The cascading and impingement dissipate a lot of the energy, however the scour at the downstream end of the spillway will occur
- The extent of such scour hole may result the instability of the spillway or even its failure.
- Predicting the scour hole depth can help the engineers to design the spillway more safe.
- Review of Literature reveals that no such study, by the knowledge of the authors, has been conducted.
- Therefore: it is the purpose of this study to conduct an experimental tests and to develop a relationship for predicting the maximum scout hole depth, downstream of the gabion stepped spillways.

Purpose of this study

 it is the purpose of this study to conduct an experimental tests and to develop a relationship for predicting the maximum scout hole depth, downstream of the gabion stepped spillways

Theoretical consideration

 From the stability analysis of a particle at threshold condition, one can obtain [Shafai-Bajestan etal . (1995)]:

$$\frac{d_s}{D_{50}} = f(SN, \frac{y_1}{D_{50}})$$
$$SN = \frac{V_1}{\sqrt{g(G_s - 1)D_{50}}}$$

Experimental set_up

• The experimental tests were conducted in a flume 50 cm wide, 8 meter length and 1.5 m height in the hydraulic laboratory of Shahid_Chamran university

Three types of spillways

A & B gabion rocks and C, D & E bed materials

Test procedures

- After placing the desired gabion spillway and bed material, the required flow discharge was established.
- Upon the establishment of the desired flow and tail water depth, the flow characteristics and the scour depth was measured.
- During the test, when little or no removal of bed material from the scour hole is observed, usually 90 minutes from the start of the test, pump was shut down.
- At the end of each test, the scour dimensions were recorded using a bed profiler.

Gabion Nets

Type I spillway

Type II spillway

Type III spillway

Scour

Results

Scour profiles at three tests (same flow discharge)

Proposed equations

• For simple gabion stepped spillway (Type I):

$$\frac{ds}{D_{50}} = 0.125 \left(\frac{y_1}{D_{50}}\right)^{1.39} (SN)^{0.95}$$
$$r^2 = 0.97$$

For pooled stepped spillway (end sill at the middle of downstream apron):

$$\frac{ds}{D_{50}} = 0.43 \left(\frac{y_1}{D_{50}}\right)^{0.98} (SN)^{0.92}$$
$$r^2 = 0.84$$

Proposed equations

• For pooled stepped spillway (end sill at the downstream end of apron) :

$$\frac{ds}{D_{50}} = \left(\frac{y_1}{D_{50}}\right)^{0.94} (SN)^{0.61}$$
$$r^2 = 0.99$$

Conclusions

- In this study three types of gabion stepped spillways under different flow conditions and bed materials were tested.
- Based on stability analysis of a particle at the point of incipient motion, a general formula was developed to predict the scour hole depth.
- By the help of regression analysis technique and use of the experimental data, three equations were developed for prediction of scour depth at downstream of stepped spillways.
- From these equations, one can predict the scour depth.
- It was found that the scour depth downstream of simple gabion stepped spillway is greater than the scour depth for pooled stepped spillway.
- A procedure for design of gabion stepped spillway is presented.

Acknowledgement

The authors would like to thank Shahid Chamran University for supporting this study

THANK YOU FOR YOUR ATTENTION