

Sampling Techniques of Sediment Transport

Katinka Koll

XXX International School of Hydraulics

Wiejce, Poland, 14-17 September 2010

Outlook

- Characteristics of Sediment Transport
 - Classification of Sediment Load
 - Effect of the Hydrograph
 - Influence of the River Geometry
- Demands on Sampling Techniques
- Sampling Techniques
 - Suspended Load
 - Bed Load
- Summary

	By Origin	By Transport Mechanism	By Grain-Size
Total Sediment Load	Wash load	Suspended load	Wash load Z < 0.06
	Bed-material load		Suspended load 0.1 < Z < 5
		Bed load	Bed load Z > 5
	Bed material		
	Rouse – Numb		se – Number $Z = \frac{W_s}{\kappa \cdot U_*}$

Wash load

- Sediment transported in the water column without contact to the river bed
- Controlled by land surface erosion
- Silt and clay with d < 0.062 mm (not part of the bed material)
- Rouse-Number Z < 0.06</p>
- Concentration in mass/volume [g/l]
- Einstein & Chien (1953): not determined by hydraulics
- Paola & Parker (2000):
 d_w is a function of flow conditions and sediment loading

Bed material load

- Sediment transported with periodic or permanent contact to the river bed (suspended and bed load)
- Grain-sizes which can be found in the bed material (d > 0.062 mm)

Suspended load

- Sediment transported in the water column
- Typically mud and sand d < 2 mm</p>
- Classification by grain-size: Rouse-Number 0.1 < Z < 5</p>
- Concentration in mass/volume [g/l]
- Threshold for entrainment depends on flow turbulence and fall velocity (see e.g. Niño et al. 2003)

Bed load

- Sediment transported at the river bed
- Classification by grain-size: Rouse-Number Z > 5
- Grain-size d > 0.062 mm (> 2 mm)
- Transport rate in mass/(width time) [kg/(m s)]
- Movement occurs sliding, rolling or saltating

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 7/49

Bed load

Threshold depends on shear stress and weight under buoyancy

Bed load

Generation of bed forms depends on grain-size and shear stress

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 9/49

Bed load

Long-term fluctuations due to bed forms

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 10/49

Bed load

 Short term fluctuations of transported sand and gravel under steady flow conditions

(Kuhnle & Southard 1988)

Demands on Sampling Techniques (1)

due to the classification of sediment load

- Mesh size small enough to catch fine particles
- Nozzle size (entrance) large enough to catch coarse particles
- Streamlined sampler to be positioned in the water column
- Heavy sampler to stay on the river bed
- Sampling volume large enough to cover transport fluctuations

Suspended load

Concentration as a function of discharge results in a scatter plot

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 13/49

Suspended load

Consideration of the time reveals hysteresis effects

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 14/49

Suspended load

 Consideration of hysteresis effects enables development of functional relations between flow strength and transport rate

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 15/49

Suspended load

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 16/49

Bed load

Hysteresis effects can be evident in transport rate and grain-size distribution of bed load

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 17/49

Bed load

 Hysteresis effects can be evident in transport rate and grain-size distribution of bed load

Bed shear stress [N/m²]

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 18/49

Demands on Sampling Techniques (2)

due to the hydrograph

- Ideal: continuous measurements with time dependent records
- Otherwise: easy to handle sampler for frequent samplings
- Small enough (streamlined) for sampling during low flow
- Strong enough for sampling during flood events

Influence of the River Geometry

Suspended load

- Concentration increases towards the bed
- Grain-size distribution depends on depth

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 20/49

Influence of the River Geometry

Suspended load

 Concentration varies with flow velocity and thus with position in the cross-section and along the river

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 21/49

Influence of the River Geometry

Bed load

- Transport rate depends on bed shear stress and bed stability
- Active part of the bed can vary with flow rate

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 22/49

Demands on Sampling Techniques (3)

due to river geometry

- Sampling over the whole cross-section
- Sampling over the whole bed width
- Ideal: simultaneous sampling at several positions
- Otherwise: short sampling intervals

Demands on Sampling Techniques

Summary

- Continuous measurements with time dependent records simultaneously sampled over the whole cross-section
- Easy to handle sampler for frequent samplings with short intervals but heavy enough for sampling during flood events
- Streamlined, small sampler with a sampling volume large enough to cover transport fluctuations
- Nozzle size large enough to catch coarse particles and mesh size small enough to catch fine particles

Suspended load

- Indirect methods: extraction of samples containing water and sediment
- Direct methods: optical and acoustic measurements

van Rijn, L.C. (1986): Manual sediment transport measurements. Delft, The Netherlands: Delft Hydraulics Laboratory

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 25/49

Suspended load - Indirect methods

- Depth-integrating sampling
 - **Buckets**

Technische Universität Braunschweig

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 26/49

Suspended load - Indirect methods

- Depth-integrating sampling
 - US D-96

- Static pressure determines inflow velocity
- Flow velocity:
 0.6 3.8 m/s
- Maximum transit rate: 0.4 x flow velocity

3l collapsible bag weight ca 60 kg

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 27/49

(FISP)

Suspended load - Indirect methods

Point-integrating sampling

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 28/49

Suspended load - Indirect methods

Point-integrating sampling

US P-61

1 bottle with ca 0.5 l or 1 l grain-size < 5 mm electronic valve opening weight ca 50 kg

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 29/49

(FISP)

Suspended load - Indirect methods

Point-integrating sampling

6 2l bottles electronic valve opening weight ca 80 kg

flow-through principle collecting only sediment > 0.1 mm

(DVWK 1986)

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 30/49

Suspended load - Indirect methods

Point-integrating sampling

Pump-Sampler

- Pump speed has to be adjusted to flow velocity
- Velocity in the hose > 1 m/s
- Hose length < 25 50 m

(van Rijn 1986)

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 31/49

Suspended load - Indirect methods

- Standard method used to calibrate other techniques
- Disadvantages:
 - Disturbance of the flow field
 - Assumption of iso-kinetic flow
 - Samples have to be analysed in the lab

Suspended load - Direct methods

Optical and acoustic measurements

Optical Backscatter (OBS)

- Infra-red light is reflected by particles and detected by photo detectors
- The resulting photo current depends on illuminated area particle size, shape, and reflectivity
- Site dependent calibration is necessary to get SSC [g/l]

Suspended load - Direct methods

Optical and acoustic measurements

Optical Backscatter (OBS)

- Linear relation between OBS output and SSC
- Different relations for different particle sizes

(van Rijn 1986)

Suspended load - Direct methods

Optical and acoustic measurements

- **Optical Laser Diffraction instruments (LISST)**
 - Simultaneous measurement of SSC and particle-size
 - Determination of settling velocity (settling time 12 or 24 h)
 - Assumption: no particle interaction
 - SSC < 5 g/l
 - Grain-size < 0.25 mm

Suspended load - Direct methods

Optical and acoustic measurements

Acoustic Backscatter (ABS)

- Emission of short pulse acoustic energy (0.5 5 MHz)
- Backscattered signal is related to sediment concentration, particle size, and time delay
- Non-intrusive technique
- Grain-size 0.01 0.5 mm

(Smerdon, Rees & Vincent)

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 36/49

Suspended load - Direct methods

Optical and acoustic measurements

Acoustic Doppler current profiler (ADCP)

- Echo intensity depends on sediment concentration and grain-size
- Site-specific relation between echo intensity and SSC
- Extensive calibration required

Suspended load - Direct methods

- Sampling of profiles and cross-sections is possible
- Continuous data acquisition is possible
- Main disadvantage:
 - Site-specific / repeated / extensive calibrations

Bed load

- Samplers and Traps
- Tracer (natural /artificial magnetic; colour; radioactive)
- Acoustic techniques (hydrophones, ADCP)
- Bed form tracking (echo-sounders, ADCP)

Bed load

Portable sampler

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 40/49

Bed load

- Sampler
 - Helley-Smith (1971) (HS-76, BL-84)

• Pressure-differential entrance to counterbalance blocking effects

Bed load

Sampler

BfG-Sampler

detachable weights

video camera, light

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 42/49

Bed load

- Typical problems of portable sampler:
 - Initial effect: stirring up of bed material when the instrument is placed on the bed (oversampling)
 - Gap effect:

occurrence of a gap between the bed and the sampler mouth due to stones, migrating ripples or erosion processes (undersampling)

- Blocking effect: blocking of the bag by fine sediment and organic materials (undersampling)
- Scooping effect: downstream drifting during lowering to the bed and forward pulling (scooping) over the bed when raising it again (oversampling)

Bed load

Sampler

Bedload trap

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 44/49

Bed load

Trap

⁽Sterling & Church 2002)

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 45/49

Bed load

⁽Bergmann et al. 2007)

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 46/49

Bed load

Tracer

Particle tracking

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 47/49

(Habersack 2001)

Bed load - Indirect methods

Bed form tracking

Repeated scan of a longitudinal profile of the river bed

XXX International School of Hydraulics | Wiejce, Poland | 14-17 September 2010 | Katinka Koll | 48/49

(Gaeuman & Jacobson 2007)

- Overview about characteristics of sediment transport
- Compilation of demands of sampling techniques
- Presentation of techniques to determine suspended and bed load

