

Technische Universität Braunschweig

Spatial variability, mean drag forces, and coefficients in an array of rigid cylinders

Thomas Schoneboom Jochen Aberle Andreas Dittrich

DFG

Leichtweiß-Institute for Hydraulic Engineering and Water Resources

Contents

- Introduction, Motivation & Objective
- Experiments
 - Drag force measurement device
 - Flume characteristics
 - Experimental procedure
- Results
 - Drag forces
 - Drag coefficients
 - Comparison between measured and predicted values
- Summary & Conclusions

INTRODUCTION, MOTIVATION & OBJECTIVE

Introduction

- Flow-vegetation interaction is important in many ecological and engineering applications
 - River restoration
 - Sediment transport
 - Flood risk management
- Riparian vegetation increases flow resistance resulting in
 - Decreasing conveyance capacity
 - Increasing flood levels
- Quantitative understanding of flow-vegetation interaction is of fundamental importance.

Introduction

Flow resistance:

$$\rho ghS = \sum F_D / b\Delta l + \tau_0'$$

Vegetative drag:

$$F_D = \frac{1}{2} \rho C_D A_P u_0^2$$

- ρ = fluid density, C_D = drag coefficient, u_0 = mean flow velocity, A_P = plant projected area
- Vegetation is in many cases simplified by rigid cylinders

1

- $A_P = h \cdot d = constant$
- $C_D = f(Re_S)$
- u₀ ≈ u_{approach} for a single, isolated cylinder

Introduction

- Multicylinder array
 - wakes and sheltering effects of upstream cylinders influence the flow field
 - mean flow velocity u_0 differs substantially from individual approach velocity $u_0 \neq u_i$
 - C_D-Re relationship for a cylinder only valid with approach velocity u_i
- C_D- dependencies in a multicylinder array with u₀
 - diameter d
 - spacing a_x , a_y
 - slope S
 - individual approach velocity $u_{0,i}$
 - Information about the velocity distribution in a multicylinder array is required to estimate C_D-values

Lindner (1982)

• Estimation of C_D in a multicylinder array by using the mean flow velocity u₀

Lindner (1982)

- Superposition of velocity defects
 - theoretically infinitely long
 - $u_{0,n}/u_0$ roughly constant for n = 20 cylinder
- Qualitative findings
 - increasing $u_{0,20}/u_0$ with increasing a_x/d for $a_x/d < 40$
 - decreasing $u_{0,20}/u_0$ with increasing a_y/d for $a_y/d < 10$
 - $u_{0,20}/u_0$ staggered > in-line
 - $u_{0,20}/u_0$ decreases with increasing u_0
- Verification of the approach in a flume study by measured flow velocities
- Direct drag force measurements on single element in an array showed a spread of ±30% (Li & Shen 1973)

Motivation & Objective

Motivation

Lindner approach has not been tested using measured drag forces

Objective

- Test of applicability of the Lindner approach by comparing measured and computed drag coefficients
- Direct and multiple drag force measurement in an array of cylinders dependent on
 - flow velocities
 - vegetation arrangement
- Analysis of spatial variability of the drag forces

EXPERIMENTS

Experiments – Flume characteristics

- Tilting flume
 - 32 m long, 0.6 m wide, 0.4 m deep
 - Pyramid shaped rubber mat, k = 3 mm
- Measurement section
 - 1.5 m long, 15.1 m downstream from flume inlet
 - 10 DFS
- Vegetation elements
 - 18.5 m long, 6 m downstream from flume inlet
 - Cylinders, Ø = 1 cm, height = 23 cm
- Flow conditions
 - steady uniform flow conditions
 - constant water depth h = 0.25 m (just submerged)
 - flow velocities u₀ = 0.20 0.70 m/s

Technische
Universität
Braunschweig

Experiments – Drag Force Measurement System

 Drag Force Measurement System (DFS) $F_d = \frac{M_1 - M_2}{l}$ F_{D} where M_1 , M_2 = moments at Pos. 1 and 2 പ I = distance between Pos. 1 and 2 \sim Ξ rubber mat head plate flume bottom Standard error ±0.02 N Sampling frequency 200 Hz **↓** Pos. 2 Η, 🕂 bending steel beam Simultaneous measurement of 10 DFS –Pos. 1 I←base plate

Experimental procedure

RESULTS

Results – Drag forces

- Large F_D-variability for both arrangements
 - -28% to +27% in-line
 - -23% to +19% staggered
- Significantly larger drag forces for staggered than for the in-line pattern

Results – Drag coefficients

- Large C_D-variability for both arrangements
 - -30% to +28% in-line
 - -18% to +22% staggered

(in accordance with measurements of Petryk, 1969)

- Larger drag coefficients for staggered than for the inline pattern
- Estimation of <F_D> or <C_D> might result in large degree of uncertainty if only one vegetation element is considered

Results – Spatially averaged drag forces and coefficients

 Consistently larger <F_D> and <C_D> for staggered than for the in-line pattern

 $\langle F_D \rangle \approx 1.42 \ u_0^2 \text{ (staggered)}$

 $< F_D > \approx 1.14 \ u_0^2 \text{ (in-line)}$

 Agrees well with findings of Li & Shen (1972) and Lindner (1982)

Results – Lindner (1982) approach in comparison with measured C_D -values

- Neglecting array arrangement results in error related to <*C*_D>
- in-line: measured values underestimated by ~16%
- staggered: measured values overestimated by ~5%
- small deviations indicate applicability of Lindner (1982) approach

Summary & Conclusions

- Measured drag forces and coefficients
 - spatial variability significant, deviation from spatial mean ±30%
 - values larger for staggered setup than for in-line
- Good agreement between measured and predicted values by Lindner (1982)
 - deviations -16% for in-line and +5% for staggered
- Estimation of C_D in a multicylinder array based on single, isolated cylinder analogy is a crude approximation

Thank you for your attention!

Leichtweiß-Institute for Hydraulic Engineering and Water Resources