

Some observations on the similarity of tracer data from a small river

Steve Wallis

Russell Manson

Heriot-Watt University Edinburgh UK Richard Stockton College New Jersey USA

Some preliminaries

SoH, Sept. 2010

Some observations on the similarity of tracer data from a small river

Steve Wallis

Russell Manson

Heriot-Watt University Edinburgh UK Richard Stockton College New Jersey USA

- Background
- Murray Burn experimental programme
- Similarity of tracer concentration profiles
- Application
- Conclusions

Background

- Pollutant transport in rivers
 - Simplest characterisation employs reach-average values of velocity, U, and dispersion coefficient, D
 - In principle, U and D are most reliably estimated using a tracer experiment
 - Discrete release of tracer
 - Observe temporal tracer concentration profiles
 - Analysis of profiles yields U and D
 - Undertaking several experiments allows U and D to be correlated with stream flow

Background

- Method of moments (MoM)
 - Traditional approach
 - U and D are proportional to rates of change of centroid time and variance of concentration profiles, respectively
 - Major weakness is that results (particularly for D) are unreliable when concentration profiles are incomplete

Background

- Aim of presentation
 - Introduce concept of similarity of tracer profiles
 - Show how the application of the concept can improve the quality of the information derived from the profiles

Murray Burn Experiments

- Study reach
 - Length 184 m
 - Mean width 2.4 m
 - Mean slope 0.009
- Tracer experiments
 - Rhodamine WT released 236 m upstream of reach
 - Water samples collected at regular time intervals
 - Laboratory analysis (Turner Designs Fluorometer)
 - Sampling designed to capture well resolved and complete profiles at both ends of the reach
 - 6 experiments during autumn 2009

Murray Burn Experiments

Similarity

Observed profiles

Similarity

Transformation of concentration-time profile

• Concentration
$$C = \frac{c}{c_p}$$

- Where: C is non-dimensional concentration c is concentration (mg/l) c_p is peak concentration (mg/l)
- Time

$$\tau = \frac{t - t_L}{t_T - t_L}$$

• Where: τ is non-dimensional time t is time (s) t_L is time of leading edge [c = 0.5c_p] (s) t_T is time of trailing edge [c = 0.5c_p] (s)

Similarity

Non-dimensional profiles •

• A common shape, therefore the same properties

• Each profile yields an estimate of the properties of the common shape

- More robust properties of the common shape found by averaging over all profiles
- Use properties of common shape to evaluate U and D for each experiment

 Enhanced method of moments (EMoM)

Application

Determining the flow dependence of D

Afterthoughts

 The written paper also discusses one crucial aspect of MoM and EMoM that is exposed if the cumulative development of profile properties is examined:

- At what value of τ should profile properties be evaluated?
- Hypothesis:
 - \bullet 0 < τ < 2 $\,$ shear flow
 - τ > 2 transient storage
- So evaluate properties:
 - at t = 2 for D
 - at t = 8 for ??

Conclusions

The concept of similarity of tracer profiles is not a new idea, but it has not yet been fully exploited

 Similarity enables information from several tracer profiles to be pooled, thus providing a mechanism for enhancing the application of the method of moments to poor quality data

 Improved estimation of dispersion coefficients in rivers is a likely consequence

Barbecue time!

Profile properties

 $\diamond U(3) \bullet D(3) \Box U(4) \blacktriangle D(4) \times U(5) \blacksquare D(5)$

- Comments
 - U decreases slightly as τ increases, but D increases significantly as τ increases
 - Asymptotic values achieved for $\tau > 6$
 - Weakness of MoM exposed (D doubles for $\tau = 2$ to 6)
 - Interpretation of U and D changes as τ increases