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Lagrangian model of saltating grain

dug pCpAp du,
p 5 UusUy + memW +

1
+ 5pCLAD (lurly ~ luly) + g(me — my)

where: ur = us — ug the relative water and particle velocity vector, d the particle diameter, Cp the drag

coefficient, C; the lift coefficient, Cp, = 0.5 the virtual mass coefficient, Ap the cross-section area, mp and

the particle and water masses, p the water density, t the time of saltation, subscript B and T denote the par _Elﬁ_

bottom and particle top.
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Lagrangian model of saltating grain
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Figure: Modeling of saltation of non-uniform grains
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(a) Diffusion of saltating particles (b) Bed-load transport



Motivation and preliminary results

Figure: Scheme of the particles movement over movable bed, vs
and us are the longitudinal and vertical velocities of particles,
respectively, ur is the flow velocity and v is the mean velocity of

the channel bed
S,




Motivation and preliminary results

Collision with the bed (Nifio and Garcia 1994)

cos (0, + Op)
Uplout = f\/(uiun T Vslin) oS (Qin T Qb) COS Qr

cos (0, + Op)
Vplout — f\/(uiwn T Vslin) o3 (Gi” T Gb) sin 6,

tan 6, = —tan (0;, + Op)
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6.= 6+ 6
Vout = Viln o (n — ft)(n ) VO)(ml n m2)
Vout = Vin B (n o ft)(n ) VO)(ml n m2)

where:

n = (cosa, sina), t = (—sina, cosa).



Motivation and preliminary results

@ How the velocity of channel bed affects the average characteristics
of saltation (length and height)?




Motivation and preliminary results

@ How the velocity of channel bed affects the average characteristics
of saltation (length and height)?

@ Is the ratio mp/my (coefficient of cohesion) can be successfully
used to determine the amount of momentum transferred at the
moment of particle collision with the channel bottom?




Motivation and preliminary results

velocity [m/s]

6 | j | | |
60 70 S0 90 100 110 120
collision angle [°]

Figure: Particle velocity of the surface layer vs. collision angle,
for the following data: V; = (0.074 m/s, -0.043 m/s), 0;, = 30°
m2/ my = 500
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Figure: Comparisons of numerical simulations with experiment‘ﬂ

data of Lee and Hsu (1994) (a) height and (b) length
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Veut = Vi, = (n = ft)(n - V?)[w]
Vi = Vi = (n—ft)(n-V?)[wy]

where:

—v—W,, mzfml=100
—& - W, ,/m =10 : | | : : :
25H —@.-w. and w ’mzf{mlzl ....... .............. .............. .............. .............. .............. ............ -

=10

,m./m

2~

2
1
1
1

and w

——W_,m

2
1
1 :___,,... —.I__—I_I__....-f-' :

1

—
upmapetilhs :
,

— -

: : i
i ———— ;

| — '
: ; i "
[ —
oy —

Figure: Values of the factors [w1]| and [ws] as a function of the fricti
f and restitution e coefficients for the three selected ratio of m»>/m;
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Results of simulations |
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Figure: Probability distributions of angles of incidence for particl
of diameter d = 2.47 [mm], u. = 0.075 [m/s] for different ratio m»
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Concluding remarks

@ The numerical results of saltaion over moving (with averaged
velocity) bed show small overestimation in the mean saltation
height and length;
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Concluding remarks

@ The numerical results of saltaion over moving (with averaged
velocity) bed show small overestimation in the mean saltation
height and length;

@ The ratio my/m; may be successfully used in the Lagrangian
models to set the links between the saltating grains and the
moving bed;

@ Generally, the presented results may be the first step to build
the model of bed load transport that will consist of two regimes:
saltation and sheet flow.
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