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| ntroduction

Free surface profiles of open channel flows exhibit considerable
undulations, depending on the flow and the boundary conditions

 An undular hydraulic jump can occur, when the approach
flow Froude number slightly exceeds unity

Undulations of the channel boundary that can induce undular
free surface profiles are:

 Flow over submerged obstacles
 Flow over wavy boundaries
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To provide a theoretical analysis for the following types of
steady undular free surface flows:

e Undular hydraulic jump on a plane smooth boundary
 Flow over a submerged hemi-cylindrical boss

 Flow over a sinusoidal boundary of a channel
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Previous Studies

Undular Hydraulic Jump Analyzed by Potential Flow Theory

Fawer (1937). The first to treat as a series of cnoidal waves that
existed following the first wave crest, but a transition from
supercritical to subcritical flow was not considered

Benjamin and Lighthill (1954) and Mandrup-Andersen (1978):
Hypothesized the first wave crest portion by a solitary wave and the
downstream flow portion by a series of subcritical cnoidal waves

lwasa (1955): Analyzed undular hydraulic jumps as a connection of
solitary and cnoidal waves at the location of critical pdipt= 1

Fawer (1937) and Mandrup-Andersen (1978): Preferred a subcritical
point ahead of the first wave crest
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Undular Hydraulic Jump Analyzed by Potential Flow Theory

|t is a traditional theoretical approach to have continuity at the
meeting point of the solitary and the cnoidal wave portions to
define the entire undular hydraulic jump profile

 In this way, it takes into account the transitional flow from
supercritical to subcritical flow induced by the boundary
resistance



Undular Hydraulic Jump Analyzed by Viscous Flow Theory

Kaufmann (1934). Found an exponentially decaying harmonic
function for the free surface profiles

Mandrup-Anderson (1978) and Montes and Chanson (1998).
Provided improved theory by using Boussinesqg-type energy equation

Montes (1998): Applied perturbation analysis to treat the turbulent
flow equations. He found that the streamwise velocity obeys the 1/7th
power law of the wall

Hager and Hutter (1984): Used an improved Boussinesq-type energy
equation obtained from the Euler equations. They accounted for the
energy dissipation by merging upstream and downstream solutions at

a suitably chosen position on the undular hydraulic jump profiles
9



Undular Hydraulic Jump Analyzed by Viscous Flow Theory

Grillhofer and Schneider (2003): Gave an asymptotic analysis of the
turbulent flow equations. They solved a third order ordinary-differential
equation for the free surface profiles leading to an undular hydraulic
jump

Castro-Orgaz (2010): Put forward a simplified method to figure out the
oscillatory boundary layer characteristics in a weakly undular hydraulic
jump

A number of good experimental studies done by Chanson (1993, 1995,
2000); Chanson and Montes (1995); Reinauer and Hager (1995); Ohtst
et al. (2001, 2003) and Gotoh et al. (2005)
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Flows over | solated-Submerged Obstacles

Good and Joubert (1968), Sforza and Mons (1970), Dimaczek et al.
(1989), Schulte and Rouvé (1986), Durédo et al. (1991), Akoz and
Kirkgoz (2009) and Akoz et al. (2010):

Studied flow over a circular or rectangular cylinder placed on the
channel bottom in the context of the wake flow behind the two-
dimensional obstacles

11
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Flows over Undular Channel Boundaries

Zhaoshun and Zhan (1989), Patel et al. (1991), Nakayama and Sak
(2002) and Tsai and Chou (2008): Used numerical techniques to solv
the problems of undular channel boundaries

Henderson (1964): Used the standard backwater approach

lwasa and Kennedy (1968): Used Boussinesg-type energy equations in
boundary-fitted system of reference, thereby accounting for the channe
boundary curvature in the governing equations

Motzfeld (1937) and Hsu and Kennedy (1971): Observed a phase lag |
the boundary pressure distribution relative to the sinusoidal boundary

Mizumura (1995): Gave the detailed difference of the free surface
profiles in the supercritical and subcritical flows over rigid wavy
boundaries by using the potential flow theory 12



Governing Equations of Undular Free Surface Flows

ﬂ_ w’ Free Surface

Boundary

Fig. 1 Definition sketch of curvilinear flow over an undular bound

ary

The Continuity equation

d 9 ~
E(’?-h)+&[(/7-h)U] =0 @
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Free Surface

Bed inclined at an angle
L with the horizontal

Boundary
t=time

U (x, t) = depth-averaged streamwise velocityét, y) = (/7 - h)_lj: u(x y t)dy
h(x) = elevation of the boundary profile from the mean bed level

U = time-averaged streamwise velocity at p&i(K, y)

n(x, t) = free surface elevation from the mean level ”



The momentum equation for curvilinear boundaries as obtained by Bose
and Dey (2007, 2009):

2 2
oy U6U+ 2 Da (7 - h)2U? 6/27+ 7L¢r21 _7( e U2
ot o0X 5@ —h) ox ox° 16 0x 0tox

on . 7,
+g COp——Q s+ =
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According to the Manning equation, tiyds given byogreU?/(n7 — h)1/3
wheren is the Manning roughness coefficient

The continuity equation, Eq. (1), thus

(7-hU =g (3)

g = discharge per unit width across the section of interest 15



Using continuity equation, i.e. Eqg. (3), the momentum equation, i.e. Eq.

(2), becomes

d3/7+§ glp-hcosB 1 |dp, 7 dgh 5 Ddh
¢ 2 o (- H2|dx 16 “a% 2(7- B2 dx

5 [z, 1
+2q2{p—g(7—h)3|r)8}— o (@

Eq. (4) determines the steady-state free surface profiles,
when undular boundary profil&x), bed inclinationfand dischargq
are known parameters
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Undular Hydraulic Jump over a Plane Sloping Boundary
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Fig. 2 Schematic of an undular hydraulic jump on a sloping boundary

Here,h(x) = 0. Therefore, Eq. (4) applies as

d°7 5(gpcosB 1\dp  5(r, . @
il A g - + —gnsinB |=0
dx’ 2( of nzjdx 2¢\p P
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The phenomenon of undular hydraulic jump is treated asstability
In the flow governed by Eq. (5)

Let, the flow depth b® at the originO (Fig. 2). In the surroundings of
O, Eqg. (5) with/7 = D yields

= pgDsing @

wherer, is pogrég/D73

For an unstable solution of Eqg. (5), fg{ x>> 0) =D(1 +r7,). Then, we
can write to the first order approximation as

R 7 _ /
I = p[g)7/3q (1_5/71j = pgDSIn,B( 1‘5’71) @
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Eqg. (5) becomes

d°;, 5(gDcosB 1\dy 25g siB
+ = - - =0
dx 2( oF D’) dx 3 ¢f N

Introducing flow Froude numbéi, = g = F,°gD?, Eq. (8) becomes
d’7, 5 (coB .\dy 25 snﬁ
+ -1|—=- =0
dx’ 2D2( R j dx 3 FD’ " @

Eq. (9) is a third-order linear ODE. Its solution is of the form=E
expx), having a constart and a coefficientd. Inserting it into Eq.
(9), A must satisfy the cubic equation. Then

coss 3
(DA)® + 2( —1)DA— 35G|:73|n,8— 0
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Since the boundary inclinatiofiis usually very small, the three roots

of Eqg. (10) are approximated as

pA=200 S g 20
3 K —cosB 3

5
2

[El_

Co¥
F 2

)

0.5

W

WhenF,? < cosb, the real parts oDA are all negative, referring to
the decaying solutions. It indicates that there is no instability in the
solution due to an exponential decrease in flow depth

Alternatively, whenF ? > coss, all the roots are real and two of
them are positive. It suggests an instability in fluid motion, resulting
In an undular hydraulic jump, as observed in experiments

20
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More specifically, all three roots of Eq. (10) are real, whiEn+ £* <0

. cos .25 _sing
where q—g[ﬁ = j and r= : [FOZ @

The condition for real roots on simplification is as follows:

(cosB—-F7 )+ 30, sifB <( @

Eqg. (13) is satisfied ifF,> to some extent exceeds ¢hs:as sidf is
very small

21



2 XXXIT

International School of Hydmullcs

28 - 31 May - 2012 - tochéw_- Poland
T S— 1;/ = ___v___// __J__/
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I ¢  Gotoh et al. (2005)
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1.4 H o
1 Undular hydraulic jump formation
1.2 —
'S No hydraulic jump formation
(decrease in flow depth)
1 N IO I
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The threshold of an undular hydraulic jump corresponds to a monotonic
iIncrease of, with S

A negative value of the LHS of Eqg. (13) refers to the zone of upper side
of the curve, which is the instability zone resulting in an undular
hydraulic jump. The experimental data plots lie on this zone of the

threshold curve )



For plotting free surface profiles, Eq. (5) is expressed In narathform

1,5 g 1)91,5 88 g

dx3 2 dx 2

where/d = g/D; X = x/D; andQ = gr?/DY3, termed resistance parameter

Numerical Solution:

The initial conditions are:
At X=0,7=1,d7 /dx= 0 andd/7 /dX = 0.0 (say) a small value

The value of2 = 0.004 relevant for a smooth boundary is considered

Eq. (14) is solved for the given values Bf and 5 by the Runge-
Kutta method s
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Fig. 4 Normalized
profiles of undula
hydraulic jumps fo
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« The computed free surface profiles in general agree well with
the experimental data, although a slight discrepancy is apparent in
the third wave portion

« The discrepancy may be attributed to the sidewall effect on an
experimental flume that could induce lateral instability resulting in

shifting of the consecutive crests of the undulations at the free
surface

25
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Fig. 6 Normalized
profiles of undula
hydraulic jumps fo
£=1,2 and 3 and
Fo=1.3
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X

The undular free surface profiles are elevated progressively with an

Increase in boundary inclinatighl

The amplitude of the free surface waves decreases with distance

becoming a flat surface at far downstream -
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Gotoh et al. (2005)
Horizontal slopep =0

| ® Mild slope, tap = 103 : : |
3 _| & Steep slope, t#F 6.135 . 16 Fig. 7 Normalized

elevation of first
wave crest as a
function ofF,

<©

1 1.5 2 2.5

Then . =.,,/D increases with an increasehy

The curves are not apparently different for the small variatiofi aluch
as £ = 0°, arctan(1/1000) and arctan(1/163), which correspond to the
horizontal, mild and steep slopes, respectively
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Present study

¢ Chanson and Montes (199‘5)

Fig. 8 Normalized
first wave heigh
Anin. as a functio
of F,

Mandrup-Anderson (1978)

2.5

TheAn/n. varies monotonically with an increasehy

There iIs some agreement between the computed curve of present
study and that obtained from the Boussinesqg equation developed

by Mandrup-Anderson (1978) fét, < 1.4

But a disagreement is always prevalent for the higher valuég of
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Computed (present study)

] Fitted by shifting computed curve
12 — 14 Chanson and Montes (1995)

Fig. 9 Normalized IengtlJ\
of first wave AL/7. as 48
function ofF,

AL /'n,

TheAL/n. diminishes with; becoming independent &, for F, > 3

Due to the backwater effects a reduction in wave length of undular
hydraulic jJumps is usually prevalent

« The factor 0.77 shows the degree of discrepancy that exists between ti
theoretical curve and the experimental data of Chanson and Montes (1995)

* Present theory overestimates the experimental data on first wave lengtt
30



Flow over a Hemi-Cylindrical Boss

.].

Free Surface

Boss

Boundary. f=0

Fig. 10 Schematic of flow over a hemi-cylindrical boss

a = Radius of the submerged hemi-cylindrical boss
D = Approach flow depth that is greater than the radiud boss

In order to have a gradual turn of the limiting streamlines at the base of
the boss, It iIs assumed that the fillets of widthon both sides of the
base of the boss are attached

&= a factor 31



For this type of flow, Eq. (4) applies whefe= 0 andr, = pgreU?/(n7 —h)1/3

dn,5/9@7-h__ 1 |d 7.dh
dxX 2| o (n-hH* dx 16 dx"

5 h 5_ grf
oo S 2y )

By setting/7=(7-1)/a; a=alD; X =x/a; andh = h/a, Eg. (15) becomes

a2 F’ [L+a(A-h)?] dx 16 d‘)?
2
+50'D 1 dh SQaD 1~/:0
2 [+a(A-h)Pdx 2 [1+a(f-h)]"

32
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where ¥* + h> =1 on the surface of the boss, so tidtdx= —%/ (1- X )%
and d*h/ dx = -3x1- ®)*?

For |} <1-¢ (surface of the boss), writingy=1+ 77— (1-%2)" | yields

d’%5 5a°( f 1)\)dj 21 X oy X
= T 7 "2 e T hR O 512 e — 172
dx’ 2 | K fe)dx 26 (1-X%9) 2 (- %)

5Qa® 1
+ 2 Df 7/3 = O @
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In the left fillet region|X +1| < &, if ., =1+ a [/ - m(%-1-¢)

wherem = slope given byn = 0.5[(2 —¢) &% ¢, then Eq. (17) becomes

d°5 5a*(f, 13)d7 S’m_1 Ra’_ 1
+ = — + [1—+ [ =0
¢ 2 ( = f_i] ax 2 2 2 {8

In the right fillet region,|X-1 < &, if f,, =1+ a[f+m(%-1-¢)

Then, Eq. (17) becomes
d* 5a°( f 1\1d7 To’m_1 RKRa°_ 1
+ 2 - = G-+ 0—=0
ax’ 2 ( F? fflj ax 2 {2 2
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Beyond the fillet regiod+ & > X > —(1+¢), h=

Eq. (17) becomes
d’%5 5a°( f 1\df a*_ 1 .
+ — + B =0, f=1+qa
d 2 (FOZ fzj dx 2 " L

Egs. (17) — (20) are third-order ordinary differential equation and can
be cast as systems of first order differential equations that can be
iIntegrated by Runge-Kutta method

For numerical computation, the approach flow Froude numbgy s
0.2 and the fillet dimensiog = 0.1. The values ofr are selected as 1/4

and 1/3

35
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Fig. 11 Normalized
free surface profile
for flow over bosse
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1/3
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There i1s a reduction In mean free surface elevation that exhibits

undular profiles extending downstream

The amplitude of the waves diminishes with an increase In

downstream distanc¥

The reduction in mean free surface elevation and the amplitude of the

waves Iincrease with an increasean
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Flow over a Sinusoidal Boundary
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Fig. 12 Schematic of flow over a sinusoidal bounda
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« The x-axis Is set through the mean boundary level, which is a
horizontal line, and the origi@® is set conveniently on this axis

« They-axis iIs therefore vertically upwards

« Due to the consideration of gradual variation of boundary
undulation, the maximum boundary perturbatjoins small compared
to the wave length and its streamwise gradiehfx| << 1

« The maximum free surface perturbatipml must be small and
henceon/ox| << 1

38
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The boundary has a sinusoidal forrh:= A sin(kX); where A =
amplitude andk = wave number. Introducing normalized quantities

1, =(7-1)10; 0= AD; {=kx ando=kD

Eq. (4) for the free surface profile becomes

3
d/7§+ 5( 1 1 d, 7 5 1
d&®  20°| fF, dé 16 207 1,

wheref, = 1 + d7, — siné). The o0 and o can be interpreted as
normalized amplitude and wave number relative to mean flow depth
D

39



 The solution of EqQ. (21) must be periodic with a periou 2

« A typical numerical experiment has been conducted for the
values ofo =0.1,0=13,F,= 0.2 andQ = 0.004

 Eqg. (21) was then solved by Runge-Kutta method and periodicity
of the solution was checked for five wavelengths of the boundary

o A satisfactory solution was obtained by taking the suitable initial
values ofr, = 0.8, dij,/dé = —-0.71 andd?s7,/d& = —0.002 at the
origin ¢ =0 by trial

« The role of initial values Is to initiate the computation for the
periodical type of solution of differential equation [Fig. 13(a)]

 There is a spatial phase lag between the wavy free surface and the
sinusoidal boundary. It is the normalized distance of a wave crest of
free surface from that of the nearest boundary crest. The lag is 3

40
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Fig. 13 Normalized free surface profileg/ QA versusé) for flow over
sinusoidal boundariesaFor 0= 0.1,0= 13,F,= 0.2 andQ = 0.004
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In another numerical experiment, the value @fwas reduced
keeping the other parameters to remain unchanged

The mean flow depthD is reduced and made closer to the
wavelength of the boundary profile

Taking g = 9.5, it was observed that the periodicity ofr2ould
not be attained

The Initial values that yielded closest to the periodicity were
found to ber, = 0.8,dr,/dé = -1.41 andi?r7,/dé = —0.003

The profile of the free surface Is plotted in Fig. 13(b), where the
peaks of the waves definitely show periodic groups of waves in a
heaving motion

The effect becomes more pronounced for smaller values of

42
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Fig. 13 Normalized free surface profileg/ QA versusé) for flow over
sinusoidal boundariesb) For o= 0.1,0= 9.5,F, = 0.2 andQ = 0.004
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Conclusions

« The undular hydraulic jump phenomenon can be treated by the
Instability principle of a third-order differential equation

 The threshold of an undular hydraulic jump is a monotonic increase
of approach flow Froude number with boundary inclination

 The elevation of the undular free surface increases progressively as
the boundary inclination increases

 The amplitude of the free surface waves decreases with an increase
In downstream distance

« The elevation of first wave crest gets higher with an increase in
approach flow Froude number

« The first wave height with respect to the conjugate flow depth
Increases with an increase in approach flow Froude number

44



For the flow over a submerged hemi-cylindrical boss placed on
the channel boundary, the steady-state flow analysis show that
there is a drop in the free surface elevation on the downstream of

the cylinder with an undular free surface profile

For the shear flow over a sinusoidal boundary, the free surface
elevation is adequately governed by a third-order ordinary

differential equation
The free surface profile lags the boundary profile

When the flow depth decreases, an accumulation of heaved waves
In the free surface is formed
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