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Free surface profiles of open channel flows exhibit considerable
undulations, depending on the flow and the boundary conditions

• An undular hydraulic jump can occur, when the approach
flow Froude number slightly exceeds unity

Undulations of the channel boundary that can induce undular
free surface profiles are:

• Flow over submerged obstacles
• Flow over wavy boundaries

Introduction
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• Undular hydraulic jump on a plane smooth boundary

• Flow over a submerged hemi-cylindrical boss

• Flow over a sinusoidal boundary of a channel

Objective of the Present Study

To provide a theoretical analysis for the following types of
steady undular free surface flows:
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Sketch of an undular hydraulic jump
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Sketch of flow over a hemi-cylindrical boss 
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Sketch of flow over a sinusoidal boundary of a channel
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Fawer (1937): The first to treat as a series of cnoidal waves that
existed following the first wave crest, but a transition from
supercritical to subcritical flow was not considered

Benjamin and Lighthill (1954) and Mandrup-Andersen (1978):
Hypothesized the first wave crest portion by a solitary wave and the
downstream flow portion by a series of subcritical cnoidal waves

Iwasa (1955): Analyzed undular hydraulic jumps as a connection of
solitary and cnoidal waves at the location of critical pointF0 = 1

Fawer (1937) and Mandrup-Andersen (1978): Preferred a subcritical
point ahead of the first wave crest

Previous Studies

Undular Hydraulic Jump Analyzed by Potential Flow Theory
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• It is a traditional theoretical approach to have continuity at the
meeting point of the solitary and the cnoidal wave portions to
define the entire undular hydraulic jump profile

• In this way, it takes into account the transitional flow from
supercritical to subcritical flow induced by the boundary
resistance

Undular Hydraulic Jump Analyzed by Potential Flow Theory



9

Kaufmann (1934): Found an exponentially decaying harmonic
function for the free surface profiles

Mandrup-Anderson (1978) and Montes and Chanson (1998):
Provided improved theory by using Boussinesq-type energy equation

Montes (1998): Applied perturbation analysis to treat the turbulent
flow equations. He found that the streamwise velocity obeys the 1/7th
power law of the wall

Hager and Hutter (1984): Used an improved Boussinesq-type energy
equation obtained from the Euler equations. They accounted for the
energy dissipation by merging upstream and downstream solutions at
a suitably chosen position on the undular hydraulic jump profiles

Undular Hydraulic Jump Analyzed by Viscous Flow Theory
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Grillhofer and Schneider (2003): Gave an asymptotic analysis of the
turbulent flow equations. They solved a third order ordinary-differential
equation for the free surface profiles leading to an undular hydraulic
jump

Castro-Orgaz (2010): Put forward a simplified method to figure out the
oscillatory boundary layer characteristics in a weakly undular hydraulic
jump

A number of good experimental studies done by Chanson (1993, 1995,
2000); Chanson and Montes (1995); Reinauer and Hager (1995); Ohtsu
et al. (2001, 2003) and Gotoh et al. (2005)

Undular Hydraulic Jump Analyzed by Viscous Flow Theory
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Good and Joubert (1968), Sforza and Mons (1970), Dimaczek et al.
(1989), Schulte and Rouvé (1986), Durão et al. (1991), Akoz and
Kirkgoz (2009) and Akoz et al. (2010):

Studied flow over a circular or rectangular cylinder placed on the
channel bottom in the context of the wake flow behind the two-
dimensional obstacles

Flows over Isolated-Submerged Obstacles 
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Zhaoshun and Zhan (1989), Patel et al. (1991), Nakayama and Sakio
(2002) and Tsai and Chou (2008): Used numerical techniques to solve
the problems of undular channel boundaries

Henderson (1964): Used the standard backwater approach

Iwasa and Kennedy (1968): Used Boussinesq-type energy equations in a
boundary-fitted system of reference, thereby accounting for the channel
boundary curvature in the governing equations

Motzfeld (1937) and Hsu and Kennedy (1971): Observed a phase lag in
the boundary pressure distribution relative to the sinusoidal boundary

Mizumura (1995): Gave the detailed difference of the free surface
profiles in the supercritical and subcritical flows over rigid wavy
boundaries by using the potential flow theory

Flows over Undular Channel Boundaries



Governing Equations of Undular Free Surface Flows

Fig. 1 Definition sketch of curvilinear flow over an undular boundary

The Continuity equation
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t = time

U (x, t) = depth-averaged streamwise velocity atP(x, y) = 1( ) ( , , )
h

h u x y t dy
η

η −− ∫

h(x) = elevation of the boundary profile from the mean bed level

= time-averaged streamwise velocity at point P(x, y) 

η(x, t) = free surface elevation from the mean level 

u

Bed inclined at an angle 
β with the horizontal 
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The momentum equation for curvilinear boundaries as obtained by Bose
and Dey (2007, 2009):
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According to the Manning equation, the τ0 is given byρgn2U2/(η – h)1/3

wheren is the Manning roughness coefficient

The continuity equation, Eq. (1), thus 
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2

3

q = discharge per unit width across the section of interest



Using continuity equation, i.e. Eq. (3), the momentum equation, i.e. Eq.
(2), becomes
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Eq. (4) determines the steady-state free surface profiles, 
when undular boundary profile h(x), bed inclination β and discharge q
are known parameters
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Undular Hydraulic Jump over a Plane Sloping Boundary 

Fig. 2 Schematic of an undular hydraulic jump on a sloping boundary
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Here, h(x) = 0. Therefore, Eq. (4) applies as 
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The phenomenon of undular hydraulic jump is treated as an instability
in the flow governed by Eq. (5) 

Let, the flow depth be D at the origin O (Fig. 2). In the surroundings of 
O, Eq. (5) with η = D yields 

0D singDτ ρ β=

For an unstable solution of Eq. (5), let η ( x >> 0) = D(1 + η1). Then, we 
can write to the first order approximation as

2 2
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where τ0D is ρgn2q2/D7/3
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Eq. (5) becomes
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Introducing flow Froude number F0 ⇒ q2 = F0
2gD3, Eq. (8) becomes 
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Eq. (9) is a third-order linear ODE. Its solution is of the formη1 = E
exp(λx), having a constantE and a coefficientλ. Inserting it into Eq.
(9), λ must satisfy the cubic equation. Then
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Since the boundary inclinationβ is usually very small, the three roots
of Eq. (10) are approximated as

and 

WhenF0
2 < cosβ, the real parts ofDλ are all negative, referring to

the decaying solutions. It indicates that there is no instability in the
solution due to an exponential decrease in flow depth

Alternatively, whenF0
2 > cosβ, all the roots are real and two of

them are positive. It suggests an instability in fluid motion, resulting
in an undular hydraulic jump, as observed in experiments
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More specifically, all three roots of Eq. (10) are real, when 3 2ˆ ˆ 0q r+ <

2
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6
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β= ⋅where and 

The condition for real roots on simplification is as follows: 

2 3 2 2
0 0(cos ) 30 sin <0F Fβ β− +

Eq. (13) is satisfied ifF0
2 to some extent exceeds cosβ, as sin2β is

very small
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1.4

1.6
F

0

Undular hydraulic jump formation

No hydraulic jump formation
(decrease in flow depth)

Gotoh et al. (2005)

Fig. 3 F0 versusβ as
threshold condition
for the formation of
an undular hydraulic
jump

The threshold of an undular hydraulic jump corresponds to a monotonic
increase ofF0 with β
A negative value of the LHS of Eq. (13) refers to the zone of upper side
of the curve, which is the instability zone resulting in an undular
hydraulic jump. The experimental data plots lie on this zone of the
threshold curve



For plotting free surface profiles, Eq. (5) is expressed in normalized form
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η̂ x̂where = η/D; = x/D; andΩ = gn2/D1/3, termed resistance parameter
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The initial conditions are:

The value of Ω = 0.004 relevant for a smooth boundary is considered 

Eq. (14) is solved for the given values ofF0 and β by the Runge-
Kutta method

2 2ˆ ˆ ˆˆ ˆ ˆ0, 1, / 0 and / 0.01x d dx d dxη η η= = = = (say) a small value At

Numerical Solution:
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Fig. 4 Normalized
profiles of undular
hydraulic jumps for
(a) F0 = 1.11 and
tanβ = 0.00355 and
(b) F0 = 1.39 and
tanβ = 0.00588
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• The computed free surface profiles in general agree well with
the experimental data, although a slight discrepancy is apparent in
the third wave portion

• The discrepancy may be attributed to the sidewall effect on an
experimental flume that could induce lateral instability resulting in
shifting of the consecutive crests of the undulations at the free
surface
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Fig. 5 Normalized
profiles of undular
hydraulic jumps for
(a) F0 = 1.07 and
tanβ = 0.00433 and
(b) F0 = 1.21 and
tanβ = 0.00567

The experimental data
of Chanson (1995) are
in agreement with the
computed profiles
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β = 1o 

β = 2o 

β = 3o Fig. 6 Normalized
profiles of undular
hydraulic jumps for
β = 1, 2 and 3° and
F0 = 1.3

The undular free surface profiles are elevated progressively with an
increase in boundary inclinationβ

The amplitude of the free surface waves decreases with distancex
becoming a flat surface at far downstream
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Gotoh et al. (2005)
Horizontal slope, β = 0 
Mild slope, tanβ = 10-3

Steep slope, tanβ = 6.135 . 10-3 Fig. 7 Normalized
elevation of first
wave crest as a
function ofF0

The =ηmax/D increases with an increase inF0

The curves are not apparently different for the small variation ofβ; such
as β = 0°, arctan(1/1000) and arctan(1/163), which correspond to the
horizontal, mild and steep slopes, respectively

mη̂
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Fig. 8 Normalized
first wave height
∆η/ηc as a function
of F0

• The∆η/ηc varies monotonically with an increase inF0

• There is some agreement between the computed curve of present
study and that obtained from the Boussinesq equation developed
by Mandrup-Anderson (1978) forF0 < 1.4

• But a disagreement is always prevalent for the higher values ofF0
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Computed (present study)

Fitted by shifting computed curve

• The∆L/ηc diminishes withF0 becoming independent ofF0 for F0 > 3

• Due to the backwater effects a reduction in wave length of undular

hydraulic jumps is usually prevalent

• The factor 0.77 shows the degree of discrepancy that exists between the

theoretical curve and the experimental data of Chanson and Montes (1995)

• Present theory overestimates the experimental data on first wave length
30

Fig. 9 Normalized length
of first wave ∆L/ηc as a
function ofF0



Flow over a Hemi-Cylindrical Boss

Fig. 10 Schematic of flow over a hemi-cylindrical boss

a = Radius of the submerged hemi-cylindrical boss

D = Approach flow depth that is greater than the radiusa of boss

In order to have a gradual turn of the limiting streamlines at the base of
the boss, it is assumed that the fillets of widthaε on both sides of the
base of the boss are attached

ε = a factor 31
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For this type of flow, Eq. (4) applies where β = 0 and τ0 = ρgn2U2/(η – h)1/3
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2 2 1x h+ =��where on the surface of the boss, so that 
1
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In the left fillet region, [ ]11 ,  if 1 ( 1 )x f m xε α η ε−+ ≤ = + − − −�� �

wherem= slope given bym= 0.5[(2 –ε)ε]1/2/ε, then Eq. (17) becomes
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Then, Eq. (17) becomes

3 2 2 2
1

3 2 2 2 7 /3
0 1 1 1

5 1 5 1 5 1
0

2 2 2

fd d m

dx F f dx f f

η α η α α+

+ + +

  Ω+ − − ⋅ + ⋅ = 
 

� �

� �

19

In the right fillet region, [ ]11 ,  if 1 ( 1 )x f m xε α η ε+− ≤ = + + − −�� �
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ˆ1 (1 ),  0x hε ε+ > > − + =�Beyond the fillet region 

Eq. (17) becomes
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Eqs. (17) – (20) are third-order ordinary differential equation and can
be cast as systems of first order differential equations that can be
integrated by Runge-Kutta method

For numerical computation, the approach flow Froude number isF0 =
0.2 and the fillet dimensionε = 0.1. The values ofα are selected as 1/4
and 1/3
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There is a reduction in mean free surface elevation that exhibits
undular profiles extending downstream

The amplitude of the waves diminishes with an increase in
downstream distance

The reduction in mean free surface elevation and the amplitude of the
waves increase with an increase inα

x�



Flow over a Sinusoidal Boundary

Fig. 12 Schematic of flow over a sinusoidal boundary
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• The x-axis is set through the mean boundary level, which is a
horizontal line, and the originO is set conveniently on this axis

• They-axis is therefore vertically upwards

• Due to the consideration of gradual variation of boundary
undulation, the maximum boundary perturbation|h| is small compared
to the wave length and its streamwise gradient is|∂h/∂x| << 1

• The maximum free surface perturbation|η| must be small and
hence|∂η/∂x| << 1
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where fs = 1 + δ(η0 – sinξ). The δ and σ can be interpreted as
normalized amplitude and wave number relative to mean flow depth
D

The boundary has a sinusoidal form:h = A sin(kx); where A =
amplitude andk = wave number. Introducing normalized quantities

Eq. (4) for the free surface profile becomes
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• The solution of Eq. (21) must be periodic with a period 2π

• A typical numerical experiment has been conducted for the
values ofδ = 0.1,σ = 13,F0 = 0.2 andΩ = 0.004

• Eq. (21) was then solved by Runge-Kutta method and periodicity
of the solution was checked for five wavelengths of the boundary

• A satisfactory solution was obtained by taking the suitable initial
values ofη0 = 0.8, dη0/dξ = –0.71 andd2η0/dξ2 = –0.002 at the
origin ξ = 0 by trial

• The role of initial values is to initiate the computation for the
periodical type of solution of differential equation [Fig. 13(a)]

• There is a spatial phase lag between the wavy free surface and the
sinusoidal boundary. It is the normalized distance of a wave crest of
free surface from that of the nearest boundary crest. The lag is 3
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Fig. 13 Normalized free surface profiles (y/A versus ξ) for flow over 
sinusoidal boundaries: (a) For δ = 0.1, σ = 13, F0 = 0.2 andΩ = 0.004
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• In another numerical experiment, the value ofσ was reduced
keeping the other parameters to remain unchanged

• The mean flow depthD is reduced and made closer to the
wavelength of the boundary profile

• Taking σ = 9.5, it was observed that the periodicity of 2π could
not be attained

• The initial values that yielded closest to the periodicity were
found to beη0 = 0.8,dη0/dξ = –1.41 andd2η0/dξ2 = –0.003

• The profile of the free surface is plotted in Fig. 13(b), where the
peaks of the waves definitely show periodic groups of waves in a
heaving motion

• The effect becomes more pronounced for smaller values ofσ
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Fig. 13 Normalized free surface profiles (y/A versus ξ) for flow over 
sinusoidal boundaries: (b) For δ = 0.1, σ = 9.5, F0 = 0.2 andΩ = 0.004
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• The undular hydraulic jump phenomenon can be treated by the
instability principle of a third-order differential equation

• The threshold of an undular hydraulic jump is a monotonic increase
of approach flow Froude number with boundary inclination

• The elevation of the undular free surface increases progressively as
the boundary inclination increases

• The amplitude of the free surface waves decreases with an increase
in downstream distance

• The elevation of first wave crest gets higher with an increase in
approach flow Froude number

• The first wave height with respect to the conjugate flow depth
increases with an increase in approach flow Froude number

Conclusions
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• For the flow over a submerged hemi-cylindrical boss placed on
the channel boundary, the steady-state flow analysis show that
there is a drop in the free surface elevation on the downstream of
the cylinder with an undular free surface profile

• For the shear flow over a sinusoidal boundary, the free surface
elevation is adequately governed by a third-order ordinary
differential equation

• The free surface profile lags the boundary profile

• When the flow depth decreases, an accumulation of heaved waves
in the free surface is formed
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