

Technische Universität Braunschweig

Scale Model Study of Propeller Induced Scour Development

Peter Geisenhainer

Bundesanstalt für Wasserbau Kompetenz für die Wasserstraßen

Leichtweiß-Institut für Wasserbau – Abt. Wasserbau

Overview

- Motivation and aim
- Model setup
- Experiments
- Results of performed experiments
- Outlook

Motivation and aim

- Motivation
 - Lack of general formula to determine scour depth
 - Increased transport volume on rivers and canals → higher loading larger motor power → higher stress on the river bed → larger scours

Prototype experiment in a groine field of the River Rhein, 1975

Motivation and aim

- Aim
 - Improvement of the understanding of scour process induced by propeller jets
 - Extension of an existing data base
 - Formulation of a formula to determine the scour depth development $\varepsilon(t)$

Motivation and Aim

Problem

$$\mathcal{E} = f(\mathbf{D}_P, K_T, \mathbf{A}_{blade}, n, h_P, h, \rho, \mu, \rho_s, d, \sigma, \phi, g, t)$$

Scour development depends on

- Ship properties
- Hydraulic conditions
- Sediment properties
- Acceleration of gravity and time

Fuchrer et al. (1981)
$$\frac{u_{b,max}}{u_0} = E\left(\frac{h_P}{D_P}\right)^{-1}$$
where $u_0 = f(n, D_P, K_T)$ BAW (2004)

- ship model "Bea W."
 - motor-driven stern model
 - scale 1:16 "Großes Rheinschiff"
 - 5 m long, 70 cm wide und 40 cm deep

30. May 2012 | Peter Geisenhainer

Wageningen-Propeller with central rudder

Kaplan-Propeller with Kort nozzle and double rudder

(BAW, 2005)

- Test station
 - basin 3,5 m wide, 15 m long und 1,25 m deep
 - two areas
 - fixing and parking area
 - sediment bed

30. May 2012 | Peter Geisenhainer

- Sediments
 - Uniform material
 - Sand $(d_{50} = 0.8 \text{mm}, \phi = 33^{\circ})$
 - Gravel ($d_{50} = 4.2mm, \phi = 33^{\circ}$)

- Measuring techniques
 - 5 supersonic sensors
 - Temporal detection of the scour depth development of a point ($\epsilon(t)$)
 - Force measuring unit (thrust S)
 - Torque measuring (torque M_T und number of revolutions n)

Experiments

- Two kinds of tests
 - Maneuvering fixed ship (already performed)
 - Start situation moving ship (not yet performed)
 - Two test groups
 - Group 1 sand
 - Group 2 gravel
 - Variation of the following parameters in each main group Propulsion system
 - Draught T
 - Water level h
 - Number of revolutions n
 - Further tests (without hull etc.)

Experiments

Three different experimental strategies

• Interval tests \rightarrow interested in scour development

Interval	Duration [s]	Total test duration [s]	Total test duration [min]
1	10	10	0:10
2	20	30	0:30
3	40	70	1:10
4	80	150	2:30
5	160	310	5:10
6	320	630	10:30
7	640	1270	21:10
8	1280	2550	42:30
9	2560	5110	85:10
10	1050	7200	120:00
11	2970	10230	170:30

- Permanent tests → performed to investigate an influence caused by interruption
 - Different test durations without interruptions, e.g. 5min, 2h, 24h
- Long term tests (24h) \rightarrow performed to "reach" the equilibrium scour depth

Experiments

- Survey of characteristic scours
 - By hand, because scanner was not available

- P1: Start of tributary scour
- P2: Port side of tributary scour
- P3: Deepest point of tributary scour
- P4: Starboard side of tributary scour
- P5: Port side of transition to main scour
- P6: Starboard side of transition to main scour
- P7: Scour depth ε
- P8: Beginning of scour ridge (port side)
- P9: Beginning of scour ridge (starboard side)
- P10: Port side of scour ridge
- P11: Starboard side of scour ridge
- P12: Beginning of scour ridge
- P13: Scour ridge height
- P14: End of scour ridge

Results – reproducibility

- Deviations 8 % of the mean value
- Reproducibility of tests is given

Results – influence of interval measurements

Influence of interval measurements not recognizable

Kaplan propeller + Kort nozzle and double rudder in gravel

Results – influence draught and water level

Development of scour depth depending on h and T

Wageningen Propeller and central rudder in sand

Results – symmetry

Shape of scour depending on kind of propulsion unit

Wageningen-series B propeller with central rudder

Kaplan propeller with Kort nozzle and double rudder

Results – Tributary scours

- occurred already in other experiments
- no consideration for the calculation of scour depth

Wageningen B-series propeller and central rudder

Twin-propeller (Felkel, 1975)

Results – scour depth

- in coarse sand deeper than in fine gravel
- depending on the induced near bed velocity u_b due to rpm
- scours caused by Kaplan propeller deeper than for Wageningen propeller (unexpected, Fuehrer and Römisch (1988))

30. May 2012 | Peter Geisenhainer

Results – scour width and length

- in sediment 1 wider than in sediment 2
- wider for Kaplan propeller than for Wageningen propeller
- same behaviour of development regarding scour length

Outlook

- investigation of the velocity field within the propeller jet
 - clarification "Why are scours caused by Kaplan propeller deeper than ones caused by Wageningen propeller?"
 - \bullet conclusion to near bed shear stress τ
- investigation of the scour development caused by moving ships

THANK YOU FOR YOUR ATTENTION

Technische Universität Braunschweig

30. May 2012 | Peter Geisenhainer

