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Aims of the work and motivation for this reaserch

Building the numerical model for generation of velocity field
over river bedforms that:

would be easy to parallelize in contrast to the commonlly

used models;

may be used for complex geometry;

Comparison of the numerical results with the field

measurements.
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Lattice Boltzmann Equation

Fundamental principle of Lattice Boltzmann Methods is to:

construct simplified molecular dynamics that incorporates the

essential characteristics of physical microscopic processes

the macroscopic averaged properties have to satisfy the

desired macroscopic equations
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Lattice Boltzmann Equation

Starting point for LBM is Boltzmann equation:

∂f

∂t
+ þv · ∇f = C (f , f )

where f = f (þx , þv , t) is distribution function at time t particles with
velocity þv around position þx and C (f , f ) is collision operator.
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Lattice Boltzmann Equation

Next, we restrict set of posible velocity

vectors {þci}i=0...b to finit number of

values b + 1.

The Lattice Boltzmann Equation reads

as follows:

fi (þr+þci∆t, t+∆t) = fi (þr , t)+Ωi
(þf (þr , t)

)

where fi (þr , t) represents the probability

of finding a particle at position þr and
time t with velocity þv = þci .

þr
þci

þr + þci∆t
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Macroscopic quantities

The main fluid quantities are obtained by simple summation upon

the dicrete speeds.

Density:

ρ(þr , t) =
∑

i

fi (þr , t)

Velocity:

þu(þr , t) =
1

ρ(þr , t)

∑

i

fi (þr , t)þci
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Bhatnagar-Gross-Krook (BGK) approximation

Lattice BGK equation form:

fi (þr + þci∆t, t +∆t) = fi (þr , t) +
1

τ

(
f
eq
i (þr , t)− fi (þr , t)

)

︸ ︷︷ ︸

Ωi
(
þf (þr ,t)
)

where:

τ – relaxation time which is a function of kinematic viscosity

f
eq
i – local equilibrium distribution function
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BGK approximation

Local equilibrium distribution function:

f
eq
i = wiρ

(

1+
uacia

þc2s
+
uaubQiab

2þc4s

)

where:

þcs – model sound speed: c2s =
∑

i wic
2

i

{wi}i – set of weights normalized to unity

Qiab = ciacibc
2
s − δab

þci = (cix , ciy ) – discrete velocity vector

þui = (uix , uiy ) – macroscopic velocity vector
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Lattice Boltzmann Equation

By using the Chapman-Enskog expansion, the LBGK micrody-

namics can recover the governing fluid equations (incompressible

N-S Equations) if ∆x and ∆t are small enough.
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D2Q9 discretization

D2Q9 dicret velocity vectors:

c0 = (0, 0), c3 = (−1, 0), c6 = (−1, 1)

c1 = (1, 0), c4 = (0,−1), c7 = (−1,−1)

c2 = (0, 1), c5 = (1, 1), c8 = (1,−1)

D2Q9 set of weights:

wi =







4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

c0
c1

c2

c3

c4

c5c6

c7 c8
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Boundary conditions

No-slip boundary condition(bounce-back boundary condition)

c0
c1

c2

c3

c4

c5c6

c7

c8

c0
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c5
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Boundary conditions

Free-slip boundary condition:

c0
c1

c2

c3

c4

c5

c6

c7 c8

c0
c1

c2

c3

c4

c5
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Boundary conditions

Inflow boundary condition For given uin, ρin we assume that þf is
in local equilibrium state fi = f

eq
i (uin, ρin).
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Boundary conditions

Inflow boundary condition For given uin, ρin we assume that þf is
in local equilibrium state fi = f

eq
i (uin, ρin).

Outflow boundary condtion We assume then fi (xout , t + ∆t) =
2fi (xout −∆x , t +∆t)− fi (xout − 2∆x , t +∆t)
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Spree, NE Germany

discharge Q = 13− 17m3/s ,

mean velocity U = 0.5− 0.7m/s ,

mean flow depth h = 1.5− 2.0m,

Reynolds number Re = 1.4× 106.

Kleeberg A., Sukhodolov A., Sukhodolova T., Köhler J. (2010). Dynamic

of riverine matter deposition, resuspension and respective phosphorus

entrainment within a vegetation mosaic.- Freshwater Biology 55: 326-

345
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Numerical simulation–results
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1 Mean velocity distributions do not fit the field measurements

data in the trough and in the lee part of bedform

2 In the separation zone the numerical simulations results

indicate the classical recircualtion

3 Future challenges

Turbulence model for LBM

Analysis of evoloution and dynamics of river bedforms

Calculation of sediment transport rate

Fluid–particle interaction over sand dunes


