

Experimental analysis of using cavitation to treat ballast water

Apoloniusz Kodura

Warsaw University of Technology, Environmental Engineering Faculty, Warsaw, Poland,

e-mail: apoloniusz.kodura@is.pw.edu.pl

Why ballast water?

- Target to obtain similar nautical conditions for vessel during its voyage.
- Answer ballast water cheap, easy to load and unload, no storage areas water can be taken directly from harbor.

Ballast water – unexpected problems

- Pollution which can be transported by ballast water can have significant impact on environmental and all aspects of human life.
- By transportation ballast water during long trips of vessels, an unwanted spieces can be easily transported to new areas. It can lead to destroy natural balance in environments.

Ballast water – treatment methods

- Changing ballast water during voyage;
- Heating ballast water;
- Screens and filter;
- Electromagnetic radiation;
- Chemicals.

The cavitation phenomenon

- Cavitation is a very complex process of changing stadium by water – from liquid to vapor.
- This process can occur in temperature 273 300 K when the pressure of water decreases significantly.
- During this phenomenon, a volume of water goes from liquid to gas in short time.

The cavitation phenomenon

- There is a big difference between pressure in gas bubbles and water, in addition values of pressure can changes rapidly.
- Gas bubbles are unsteady time of their duration is short, pressure changes rapidly and process of collapsing can lead to destroy elements of networks, propellers and pumps.

Idea

 The rapidly changes of pressure can be dangerous for organisms in water – the main aim of research is to answer how significant is impact of cavitation on organisms.

Model

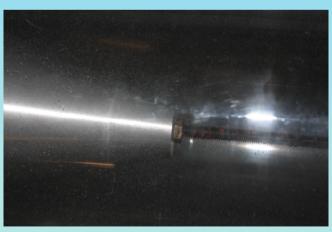
 A model consists of pump (Goulds i9136), pipes (5.625" internal diameter), valves, pressures transducers and speed meter was build in Marine HydroLab, NA&ME, The University of Michigan

Model

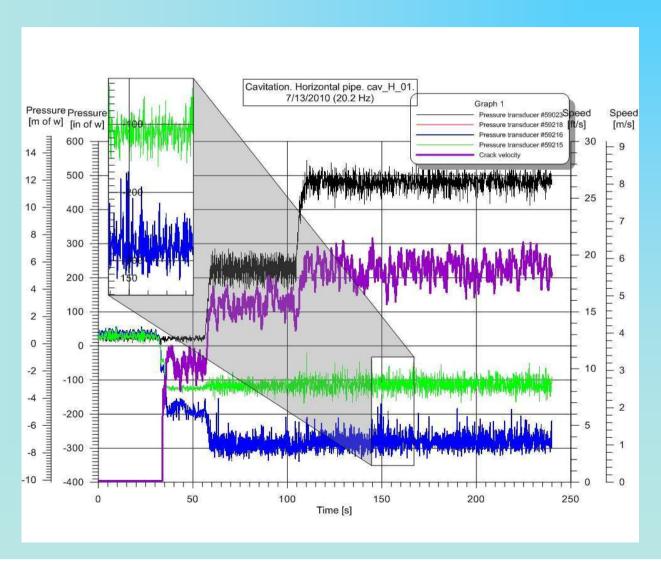
Cavitation set

Experiments

- Experiments were made in two steps
 - First step analysis of conditions of cavitation in horizontal and vertical pipeline
 - Second step analysis of cavitation's influence on microorganisms in water



Experiments –cavitation zone



Experiments – pressure transducers in cavitation zone

Field's tests

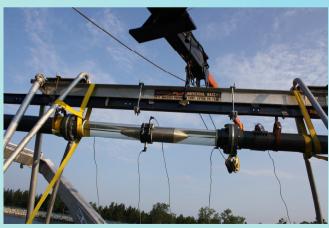
Field's tests were made in Muskegon from 8/03/2010 to 8/05/2010.

Experiments were made on shore of Muskegon Channel that connects Muskegon Lake and Michigan Lake.

The model was installed on board of a vessel, and experiments were made on ship.

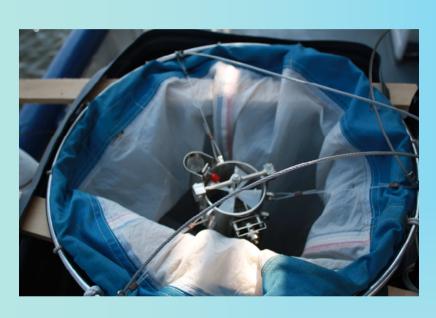
Field's tests – first stage

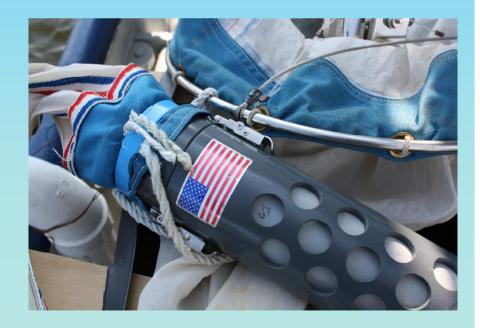
Field's tests – on the ship



Cavitation model on the ship

Field's tests – on the ship

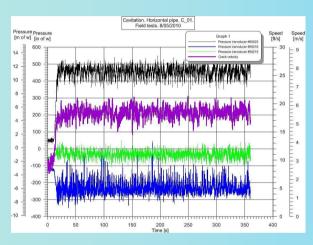


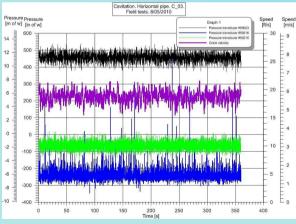


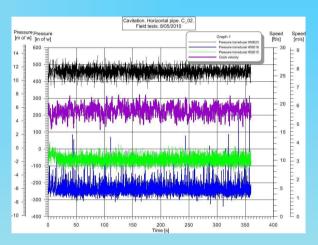
Field's tests - experiments

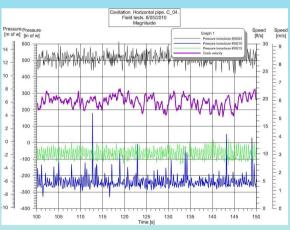
 Biological investigation – zooplankton screen and filter

Field's tests - cavitation

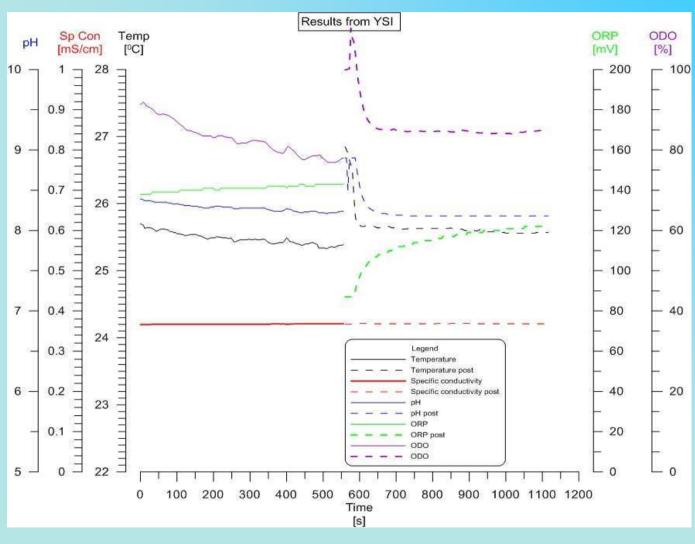








Field's tests - cavitation



Field's tests - YSI data

Field's tests - YSI data

Temperature

- there is a small increase of temperature (initially 1.2⁰C, then approx 0.2⁰C)
- Specific Conductivity
 - There is no influence a cavitation phenomenon on specific conductivity
- pH
 - In the first phase there is an increase of pH, however there is a time of equipment stabilization, then the value of pH is similar like before the cavitation phenomenon

Field's tests - YSI data

ORP

- There is a significant decrease of value from approx 140 mV before cavitation to initially 90 mV, then value of ORP increases during time to level approx 120 mV.
- Oxidation reduction potential there is a measure of tendency of a chemical species to acquire electrons and thereby be reduced.

ODO

- There is increase of ODO from 75% before cavitation to approx 85% after cavitation.
- Oxygen saturation relative measure of the amount of oxygen dissolved in the water.

Conclusions

- After analyzing samples collected during the field tests, high efficiency of using cavitation to eliminate microorganism was confirmed. The result of 80% destroyed species after one stage of cavitation is very promising. Next experiments and analysis are necessary to improve the method and to design a prototype of ballast water treatment system by using cavitation.
- In addition, a very interesting phenomenon of changing values of ORP and ODO was observed, which is a proof of efficient mixing water during cavitation process and should be tested in next steps.

Thank you for your attention