

Flood quantile estimates related to model and optimization criteria

Iwona Markiewicz Witold G. Strupczewski Krzysztof Kochanek

XXXII International School of Hydraulics, May 28-31, 2012 Lochow, Poland

WHERE ARE WE HEADING IN FLOOD QUANTILES ESTIMATION?

Whether the theory meets the expectations of the practice?

Introduction

flood quantile = probable size of flood flows within a given return period *T* years

Flood Frequency Analysis (FFA) = estimation of upper quantiles of assumed probability density function of annual or partial duration maximum flows

Return period T

$$T = \frac{1}{1 - F} = \frac{1}{P(X > x_F)}$$

 $T = 10 \leftrightarrow F = 0.9$ $T = 100 \leftrightarrow F = 0.99$ $T = 1000 \leftrightarrow F = 0.999$

Application of flood quantile estimates

- designing hydraulic structures (spillways, dams, bridges, levees,etc.)
- determining the limits of flood zones with varying degree of flood risk
- estimating the risk of exploitation of floodplains
- valuation of some insurance premiums

Flood near the village of Swiniary, in Central Poland, May 25, 2010. (AP Photo/Czarek Sokolowski)

Avon & Severn Rivers, Tewkesbury, UK, 2007.

Flood quantiles estimation

Issue:

- > choice of probability model
- > choice of optimization criterion

Discrimination procedure:

best-fit model to empirical data, primarily in upper quantiles

Problems

- Unknown probability distribution function of annual peaks
- Short time series (N<<T)</p>
- Error corrupted data
- Simplifying assumptions:
 - independent and identically distributed (i.i.d.) data
 - > stationarity of relatively long series

Flood quantile estimates are highly uncertain

Case study

Annual peak flows for Nowy Targ on the Dunajec River, 1921-2010

Models

2 parameters

- gamma (Ga)
- Weibull (We)
- log-normal (LN)
- log-logistic (LL)
- log-Gumbel (LG)

3 parameters

- Pearson (Pe)
- Weibull (We)
- log-normal (LN)
- generalized log-logistic (GLL)
- generalized extreme value (GEV)

Optimization criteria

- Criterion of (conventional) moments MO
- Criterion of linear moments LM
- Maximum likelihood criterion ML
- Criterion built on mean deviation MD

MD	Location	Dispersion	Skewness
Measure	μ	$\delta_{\mu} = \int_{-\infty}^{+\infty} x - \mu dF(x)$	$\delta_{S} = \mu - med$
Dimensionless measure	_	$\delta C_{_V} = rac{\delta_{_\mu}}{\mu}$	$\delta C_{s} = \frac{\delta_{s}}{\delta_{\mu}}$

- Markiewicz , I., Strupczewski, W.G., Kochanek, K. (2010). On accuracy of upper quantiles estimation. Hydrology and Earth System Sciences, 14: 2167-2175. DOI:10.5194/hess-14-2167-2010
- Markiewicz, I. and Strupczewski ,W.G. (2009). Dispersion measures for flood frequency analysis. *Physics and Chemistry of the Earth*, 34: 670-678. DOI 10.1016/j.pce.2009.04.003.
- Markiewicz, I., Strupczewski, W.G., Kochanek, K. and Singh, V.P. (2006). Relations between three dispersion measures used in flood frequency analysis. *Stochastic Environamental Research and Risk Assessment*, 20: 391-405. DOI 10.1007/s00477-006-0033-x.

(1) Akaike information criterion (corrected for finite sample)

$$AICc = -2\ln\left[L\left(f\left(x/\hat{\theta}\right)\right)\right] + 2K + \frac{2K(K+1)}{N-K-1}$$

K – number of model parameters

L – likelihood function of model

The best model = this one of the lowest AICc value

(2) Daniels characteristic

 $D_{\max} = \max_{i=1,...,N} \frac{F(x_{i:N}) - \hat{F}_{i:N}}{1 - F(x_{i:N})}$

 $F(x_{i:N})$ – theoretical probability of the *i*-th element of $x_{1:N} \leq ... \leq x_{N:N}$ $\hat{F}_{i:N}$ – empirical probability given by the Weibull formula: $\hat{F}_{i:N} = i/(N+1)$

Sensitive within the area of probabilities approximating to one !

The best model = this one of the lowest D_{max} value

(3) Difference between the quantile estimates

$$\begin{split} D_1 &= \hat{x}_{_{1\%}}^{ML} - \hat{x}_{_{1\%}}^{MO} \\ D_2 &= \hat{x}_{_{1\%}}^{ML} - \hat{x}_{_{1\%}}^{LM} \\ D_3 &= \hat{x}_{_{1\%}}^{ML} - \hat{x}_{_{1\%}}^{MD} \end{split}$$

 $\hat{x}_{_{1\%}}^{MO} - 1\%$ quantile estimated by the criterion of moments $\hat{x}_{_{1\%}}^{LM} - 1\%$ quantile estimated by the criterion of linear moments $\hat{x}_{_{1\%}}^{MD} - 1\%$ quantile estimated by the criterion built on mean deviation $\hat{x}_{_{1\%}}^{ML} - 1\%$ quantile estimated by the maximum likelihood criterion

The best model = this one of the lowest Di value

Flood quantile estimates for two-parameter models

1% quantile estimate value							
	Ga We LN LL						
MO	620.64	604.11	671.1	638.76	630.68		
LM	590.57	558.09	706.79	788.88	900.07		
MD	603.07	570.88	726.41	827.07	914.32		
ML	555.68	552.85	718.76	929.17	731.92		

	Akaike information criterion						
	Ga We LN LL LC						
MO	1088.7	1093.1	1081.4	1095.9	2157.2		
LM	1086.7	1091.5	1080.8	1085.1	1209.4		
MD	1087.4	1091.7	1080.9	1084.5	1198		
ML	1085.7	1091.4	1080.8	1084.1	1142.6		

Daniels characteristic							
	Ga We LN LL LG						
MO	8.8241	16.12	2.1758	1.8015	1.69		
LM	15.21	55.578	1.4466	0.5633	0.786		
MD	12.022	37.69	1.1562	0.5436	0.7817		
ML	31.978	69.362	1.2728	0.3877	1.9364		

Difference between the quantile estimates						
Ga We LN LL LG						
XML-XMO	64.96	51.265	47.661	290.4	101.24	
XML-XLM	34.886	5.2418	11.968	140.28	168.16	
XML-XMD	47.384	18.031	7.6492	102.1	182.4	

Flood quantile estimates for three-parameter models

	1% quantile estimate value							
Pe We LN GLL GE								
MO	665.95	665.02	649.79	619.46	641.51			
LM	650.75	635.73	678.94	719.7	699.77			
MD	663.57	667.89	737.73	830.26	801.02			
ML	579.71	579.1	701.3	812.19	864.17			

	Akaike information criterion						
	Pe We LN GLL GE						
MO	****	****	1086.8	1103	1092		
LM	****	****	1083.6	1090.9	1086.7		
MD	****	****	1087.6	1087	1084.5		
ML	1085.2	1087.7	1082.7	1086.5	1084.4		

Daniels characteristic							
	Pe We LN GLL GE						
MO	3.5702	3.5053	3.2613	3.5584	3.3025		
LM	4.6892	6.239	2.1049	0.9351	1.3651		
MD	3.8207	3.4893	0.8734	0.5514	0.6589		
ML	17.717	25.306	1.5643	0.6719	0.6594		

Difference between the quantile estimates						
Pe We LN GLL GEV						
XML-XMO	86.245	85.918	51.512	192.72	222.66	
XML-XLM	71.046	56.635	22.361	92.486	164.4	
XML-XMD	83.864	88.79	36.427	18.074	63.15	

Conclusions

- The choice of the best fitting model and, thus, hydrological design value (i.e. 1% quantile) depends on the optimization criterion and the procedure of discrimination.
 It is characteristic for hydrological size of samples.
- Development of flood frequency modelling is done by improvement of statistical techniques, which in turn leads to a proliferation of models, optimization criteria and discrimination procedures.
 This causes an increase in our awareness of the uncertainty of flood quantile estimates instead of leading to clear solution.
- The hydrologists want to have an unique value, not accepting the uncertainty !!!

WHERE ARE WE HEADING IN FLOOD QUANTILES ESTIMATION?

Go back and start examining the way in which hydrological frequency analysis has been doing

THANK YOU

Acknowledgements This work was financed by the Polish Ministry of Science and Higher Education under the Grant IP 2010 024570 titled "Analysis of the efficciency of estimation methods in flood frequency modeling".