Correlation Measures for Solute Transport Model Identification & Evaluation

<u>Fred Sonnenwald¹</u>, Virginia Stovin¹, and Ian Guymer²

The University of Sheffield
The University of Warwick

Solute Transport Models

- Advection Dispersion Equations (ADE)
- Aggregated Dead-Zone (ADZ)
- Residence Time Distribution (RTD)

- All take input, manipulate, produce output
- If the input is recorded data, there is usually recorded output to compare model output to

Correlation Measures

- Come in a variety of forms for a variety of purposes
- Describe the similarity between two timeseries

Identification & Evaluation

- In context they are two different, but related problems
- Identification is getting the model output to match the recorded data through adjustment of model parameters
- Evaluation is judging how well one model's output fits compared to another's or how well the model fits the recorded data

Research Question

- Deconvolution is an optimisation process for finding the parameters that describe the residence time distribution (Identification)
- Multiple data sets lead to the generation of large numbers of parameterized models to be evaluated (Evaluation)
- Both use correlation measures how do different correlation measures reflect the difference between measurement and model?

Desirable Characteristics of Measures

- Sensitivity to Transformation (change in shape)
- Sensitivity to Transformation Magnitude (scale of change in shape)
- Insensitivity to noise
- Insensitivity to length of time-series (evaluation only)

Methodology

- Identified 12 correlation measures
 - BLC, χ², FFCBS, R², PMCC, RMSD, R_t², SimilB, YIC, CORR2, ISE, APE
- Generated three test scenarios
- Applied transformations at different magnitudes, as well as noise
- Compared modified traces to unmodified traces
- Normalised results and compared

Mixing Scenarios

- Instantaneous Input
- Step Input
- Complex

Transformations

- Scaling
- Shifting
- Truncation
- Stretching
- Squeezing

• Noise

Normalisation and Comparison

- Dimensional and non-dimensional correlation measures
- Possible to compare directly in plots
- Standard deviation of correlation values with respect to each parameter indicates sensitivity to that parameter

Complete Plots

Noise Level

THE UNIVERSITY OF WARWICK

Standard Deviation Plot

• BLC, χ^2 , FFCBS, R², RMSD, R_t², ISE, APE

Application to Model Evaluation

Recorded

— Model A2 — Model B2

• Non-dimensional measures (R², R²_t, APE)

Model A1 — Model B1 — Model C1

- R_t² very elastic about indicating model fit
- R² very specific about defining overall shape
- APE reflects small differences extremely well

Recorded -

Conclusion

- 8/12 measures found suitable for identification
 - BLC, χ^2 , FFCBS, R², RMSD, R_t², ISE, APE
- 3/8 measures found suitable for evaluation R^2 , R_t^2 , APE
- Different measures can be more suitable in different scenarios

Thank you for listening

