Interaction between storm water conduit flow and overland flow for numerical modelling of urban area inundation

Author:

Jakub Hakiel Michał Szydłowski Department of Hydraulic Engineering Faculty of Civil and Environmental Engineering Gdańsk University of Technology

Urban flooding

Pluvial (surface) flooding.

Caused by extreme rainfall events that cannot be absorbed by drainage system.

Urban flooding

Pluvial (surface) flooding.

Caused by extreme rainfall events that cannot be absorbed by drainage system.

source: "www.trojmiasto.pl"

source: "www.trojmiasto.pl"

Modelling of urban flooding

Dual drainage modelling (1D+2D):

Storm water pipe flow (1D)

The Saint-Venant Equations

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}$$
$$\mathbf{U} = \begin{pmatrix} A \\ Q \end{pmatrix} \qquad \mathbf{F} = \begin{pmatrix} Q \\ Q^2 / A + I \end{pmatrix} \qquad \mathbf{S} = \begin{pmatrix} 0 \\ gA(S_o - S_f) \end{pmatrix}$$

,

,

,

Storm water pipe flow (1D)

The Saint-Venant Equations

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}$$
$$\mathbf{U} = \begin{pmatrix} A \\ Q \end{pmatrix} \qquad \mathbf{F} = \begin{pmatrix} Q \\ Q^2 / A + I \end{pmatrix} \qquad \mathbf{S} = \begin{pmatrix} 0 \\ gA(S_o - S_f) \end{pmatrix}$$

Solving:

- finite differences method,
- finite elements method.

Surface flow (2D)

Shallow Water Equations (SWE)

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \mathbf{S} = 0$$

$$\mathbf{U} = \begin{pmatrix} h \\ uh \\ vh \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} 0 \\ -gh(S_{ox} - S_{fx}) \\ -gh(S_{oy} - S_{fy}) \end{pmatrix} \quad \mathbf{E} = \begin{pmatrix} uh \\ u^2h + 0.5gh^2 \\ uvh \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} vh \\ uvh \\ v^2h + 0.5gh^2 \end{pmatrix}$$

Surface flow (2D)

Shallow Water Equations (SWE)

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \mathbf{S} = 0$$

$$\mathbf{U} = \begin{pmatrix} h \\ uh \\ vh \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} 0 \\ -gh(S_{ox} - S_{fx}) \\ -gh(S_{oy} - S_{fy}) \end{pmatrix} \quad \mathbf{E} = \begin{pmatrix} uh \\ u^2h + 0.5gh^2 \\ uvh \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} vh \\ uvh \\ v^2h + 0.5gh^2 \end{pmatrix}$$

Solving:

- finite volume method,
- finite element method,
- finite difference method.

Concept of dual drainage modelling

Problem of interaction!

Modelling made in steps

Storm water pipe flow modelling Results (piezometric pressure) Surface flow modelling (step 1 results taken as data)

Results (Surface water depth)

Test held at hydraulic laboratory of the Gdańsk University of Technology

Scheme of urban area inundation laboratory stand

Photography of urban area inundation laboratory stand

Results

Comparison of measurements and calculations for urban area inundation experiment

Results

Comparison of measurements and calculations for urban area inundation experiment

Conclusion: interaction is needed in calculations

Integrated models

Interaction between pipe and surface flow

Free weir:

$$Q = sign[h_{mh} - h_{2d}]c_{w}w\sqrt{2g}(h_{U} - z_{crest})^{3/2}$$

Submerged weir and orifice:

$$(h_{U} - z_{crest}) < A_{mh}/w$$

$$Q = sign[h_{mh} - h_{2d}]c_{w}w\sqrt{2g}(h_{U} - z_{crest})(h_{U} - h_{D})^{1/2}$$

$$(h_{U} - z_{crest}) \ge A_{mh}/w$$

$$Q = sign[h_{mh} - h_{2d}]c_{o}A_{mh}\sqrt{2g}(h_{U} - h_{D})^{1/2}$$

Interaction

Questions and problems?

No verification presented (why we need it?):

Interaction

Questions and problems?

No verification presented (why we need it?):

Verification if equations are valid for:

- high surface slopes,
- high values of velocity,

Is there a need to include velocity in calculations?

How can we do that?

Test stand

Scheme of laboratory stand for surface and sewage flow interaction experiments

channel: length: 5.5m width: 0.4m pipe: diameter: 110mm

Photography of laboratory stand for surface and sewage flow interaction experiments

Test stand - measurements

Test scenarios

• inflow from surface,

Inflow from surface with increased water depth,

• free inflow from sewage,

Results

Verifying formula for free weir with 1‰ surface slope:

Results

Comparing inflow values for different slope:

First approach based on elevation and velocity:

Basic free weir formula:

$$Q = sign[h_{mh} - h_{2d}]c_{w}w\sqrt{2g}(h_{U} - z_{crest})^{3/2}$$

Free weir formula with velocity head:

$$Q = sign[h_{mh} - h_{2d}]c_w w \sqrt{2g} [(h_U - z_{crest} + \frac{V^2}{2g})^{3/2} - (\frac{V^2}{2g})^{3/2}]$$

First approach based on elevation and velocity:

Results (i=0.6%):

First approach based on elevation and velocity:

Results (i=1.5%):

Conclusion of current results:

- for not sloped channels basic free weir formula is correct,
- with slope increase we observe higher values of inflow into manhole,
- there is a need for including velocity values into equations,
- approach using basic hydraulic formulas for free weir including velocity head is not suitable for this case.

Thank You for your attention