Modeling of ice passage through reservoirs system on the Vistula River

Tomasz Kolerski, PhD Gdańsk University of Technology

May 19th, 2015

Potentially possible locational variants of the new dam

Final four locations was proposed after the comprehensive studies of exclusive analysis

- **Siarzewo II** (km 707+900)
- **Siarzewo** (km 706+400)
- **Nieszawa** (km 703+700)
- **Przypust** (km 700+200)

Areas included as Natura 2000 sites

- Arbitrarily introduced environment and species protection program
- Restrictive provisions within the Natura 2000 areas

Ovbin

Strachon

DOBRZYA NADWISLA

Zbyszer

tenite Watkin

Investments are possible if complying with conditions described in Article 34 of the Environmental **Protection Law**

Włocławek – Hutnicza dam km 680+000

The project is not economically reasonable Considered because it not affects the Natura 2000 sites

Rydz Śmigły Bridge

Truss bridge on the local road

6 caisson piers in a main channel

10 m vertical clearance (for normal and low flow conditions)

Courtesy of M. Grześ

Numerical Model Formulation

DynaRICE is a two-dimensional numerical model for dynamic transport and jamming of surface ice.

- Hydrodynamics Explicit characteristic upwind Petrov Galerkin FEM method, with dry-wet bed conditions, for transitional flows.
- Ice Dynamics SPH (Lagrangian discrete parcel method).
- The model simulates the coupled dynamics of ice motion and water flow, including the flow through and under the ice rubble.
- The ice dynamic equations consider all the external and internal forces.

The model has been extended to include thermal ice

Hydrodynamic Equations

Ice Dynamics Equations

Momentum equation of the surface ice in Lagrangian form:

$$M\frac{D\vec{V}_i}{Dt} = \vec{R} + \vec{F}_a + \vec{F}_w + \vec{G} + \vec{C}$$

Ice mass conservation equation:

$$\frac{\mathrm{DM}}{\mathrm{Dt}} + \mathrm{M}\nabla \cdot \vec{\mathrm{V}} = 0$$

Area conservation equation:

$$\frac{\mathrm{DN}}{\mathrm{Dt}} + \mathrm{N}\nabla \cdot \vec{\mathrm{V}}_{\mathrm{i}} = 0$$

- \vec{R} internalice resistance
- \vec{F}_a wind drag
- \vec{F}_{w} water drag
- \vec{G} gravity force
- \vec{C} Coriolis force

Dynamic boundary condition at land boundaries and bed friction:

$$\vec{F}_{B} = -sgn(v_{t})\mu_{B}F_{n}\vec{t}$$

Finite Element mesh

Boundary conditions

- Upstream (Włocławek Dam) Discharge Q(t)
 - 300 m³/s 3 spans open; 105 m³/s each (one span 20 m width; 3 x 20 = 60 m)
 - 600 m³/s 6 spans open
 (6 x 20 = 120 m)

Downstream (new dam) water surface elevation at pool level H=46 m npm (HKron86)

- 300 m³/s 3 spans open
 (one span 25 m; 3 x 25 = 75 m)
- 600 m³/s 6 spans open (6 x 25 = 150 m)

Courtesy of M. Grześ

Ice load calculations

- ice run without sluicing was simulated for average water discharge (900 m³/s)
- Spans with the highes normal force recorded were selected for ice sluicing
 - i.e. Nieszawa Dam:
 - For discherge 300 m³/s spans no 9, 10 i 11
 - For discherge 600 m³/s spans no 7, 8, 9, 10, 11 i 12

Border ice zones in the Hutnicza reservoir for average discharge Q=900 m³/s

Sensitivity study

	Q	Wind Velocity	Remarks
	[m ³ /s]	[m/s]	
Case 1	600	0	
Case 2	600	2	
Case 3	600	5	
Case 4	300	0	Low Discharge
Case 5	300	5	
Case 6	300	2	

Nieszawa Dam (km 703+700)

Q = 600 m³/s Wind 5 m/s

Siarzewo Dam (km 706+400)

Q = 600 m³/s Wind 5 m/s

Siarzewo II Dam (km 707+900)

Q = 600 m³/s Wind 5 m/s

Conclusions

- ice passage through the new reservoir is generally possible for any dam location and do not cause significant jam risk for no wind condition
- the major problem for the Hutnicza reservoir is the small size, therefore the ice retention possibility is limited
- In all simulated cases results shown some ice accumulation as an effect of bridge piers interaction
- ice sluicing during the unfavorable western wind conditions could proceed only for dam locations at Przypust and Siarzewo

