Flume experiments on gravel bed load transport in unsteady flow – preliminary results

<u>Magdalena Mrokowska¹</u> Paweł Rowiński¹ Leszek Książek² Andrzej Strużyński² Maciej Wyrębek² Artur Radecki-Pawlik²

¹Institute of Geophysics Polish Academy of Sciences ²University of Agriculture in Krakow

This study has been financed by National Science Centre. Grant no. DEC-2011/01/N/ST10/07395

XXXIV International School of Hydraulics 11-14 May 2015, Żelechów

Outline

- 1. Motivation and objectives
- 2. Experimental set-up
- 3. Results of experiments and data treatment
- 4. Analysis of results
- 5. Summary

Motivation

Factors affecting bed load rate

Spatial arrangement of sediment grains: coarsening, armoring -> partial transport

Rate of sediment supply from upstream

Non-uniformity and unsteadiness of flow

UNIVERSITY OF AGRICULTURE

Objectives

Objective 1

analyse to what extent **sediment supply** affects bed load transport in unsteady flow

Objective 2

examine variability of bed load rate in unsteady flow in comparison with bed load rate in steady flow

Objective 3

analyse changes in grain size distribution after experimental tests

Hydraulics Laboratory of University of Agriculture in Kraków

Set - up

Fine gravel

Ultrasonic flowmeter

Resistive gauges

Trap and weighing scales

Experimental tests

Results: cumulative transport

	Hyd1_1	Hyd1_2	Hyd1_3	Hyd2_1	Hyd2_2
Wsup (kg)	13.46	11.59	18.19	10.6	8.33
Wt (kg)	9.505	7.787	9.280	5.444	4.383

Results: bed load rate

Evaluation methods:

- q_{fp}: four-point difference quotient
- q_{FFT}: fast Fourier transform applied to q_{fp}
- q_{sg}: Savitzky Golay filter

Results: bed load rate vs. flow rate

- clockwise hysteresis maximum bed load rate in a rising limb of hydrographs
- bed load rates during Hyd1_2 and Hyd 2_2 are below bed load rate for the same discharge in steady flow. This may be explained by too small amount of supplied sediment in these unsteady flow tests

Results: grain size distribution

- The percent finer decreases and mean grain size increases for 4 out of 5 hydrographs
- These changes are probably due to washing out of sand fraction which decreases about 1.5÷3.7%
- Hyd1_3 deviates form others: percent finer increases and grain size decreases
- Hyd1_3 has the highest sediment supply, content of sand fraction increase about 1.2%

Summary

Objective 1 - sediment supply

The bed load transport is very sensitive to sediment supply

Objective 2 - variability of bed load rate

The relation between bed load rate in unsteady flow and bed load rate in steady flow equilibrium conditions depends to large extent on sediment supply

Objective 3 - changes in grain size distribution

Sediment tends to coarsen except the experiment with excessive sediment supply

Thank you for attention

Problems

- Keeping water surface slope
- Water depth measurement
 - Difficulties during flow,
 - Variation with changing bed elevation,
 - Erosion along centerline of a channel,
- Choice of supply option:
 - no supply -> excessive erosion -> problems with water slope,
 - manual supply how to assess the appropriate rate of supply?
- How to compare with steady flow equillibrium conditions?
- Repeatability

Problems: water surface slope and friction velocity

Experimental tests

Set - up

