- O Aeration process
- O Study sites and field design
- O Results
- O Conclusions

Experimental investigations on the gas transfer efficiency at low-head hydraulic structures

Agnieszka Rajwa-Kuligiewicz, Robert J. Bialik, Paweł M. Rowiński

Department of Hydrology and Hydrodynamics Institute of Geophysics Polish Academy of Sciences

- Aeration process
- Study sites and field design
- O Results
- Conclusions

Goals

Q quantify gas transfer characteristics of hydraulic structures

under small oxygen deficit;

assess the impact of hydraulic structures on downstream
 D0 conditions.

• Aeration process

- O Study sites and field design
- O Results
- Conclusions

XXXIV International School of Hydraulics

Oxygen transfer	$\frac{dC}{dt} = K_{L}a(C_{s} - C)$	K _L a –
Deficit ratio	$r = \frac{C_{s} - C_{US}}{C_{s} - C_{DS}} = \exp\left[\int_{up}^{down} K_{L}a dt\right]$	C – C _{US}
Gas transfer efficiency ratio	$E = \frac{C_{DS} - C_{US}}{C_S - C_{US}} = 1 - \frac{1}{r}$ (Gameson 1957)	ups C _{DS} dov

 K_L - reaeration coefficienta - specific surface area $C_s - O_2$ saturation concentration $C - O_2$ concentration in water $C_{US} - O_2$ concentrationupstream $C_{DS} - O_2$ concentrationdownstream

• Aeration process

- O Study sites and field design
- O Results
- Conclusions

XXXIV International School of Hydraulics

Temperature corrected gas transfer efficiency ratio	$E_{20} = 1 - (1 - E)^{\frac{1}{f}};$ f = 1 + \alpha(T - 20) + \beta(T - 20)^2			
	(Gulliver et al. 1990)			
Uncertainty in E	$U_{E} = \frac{\left(W_{C_{DS}}^{2} + \left(W_{C_{US}}(1-E)\right)^{2} + (B_{C}E)^{2} + (B_{CS}E)^{2}\right)^{\frac{1}{2}}}{C_{s} - C_{US}}$ (Gulliver and Rindels 1993)			

 $\alpha = 2.103 \cdot 10^{-2}$

 $\beta = 9.261 \cdot 10^{-5}$

 U_E – total unceratinty in E

 Wc_{US} , Wc_{DS} – precision unceratainties in C_{US} and C_{DS}

 B_{C} – bias unceratainty in the measurements of C_{US} and C_{DS}

 B_{Cs} – bias uncentainty in C_s

- Aeration process
- Study sites and field design
- O Results
- Conclusions

Fig. 1 Weir (the Narew River)

Fig. 2 Water step (the Wilga River)

High-frequency in-situ measurements of:

- ✓ dissolved oxygen;
- ✓ water temperature;
- ✓ air pressure;

• Aeration process

- Study sites and field design
- O Results
- \bigcirc Conclusions

XXXIV International School of Hydraulics

Tab. 1 Hydraulic characteristics of rivers before the hydraulic structures

River	B (m)	H (m)	T (°C)	Q (m ³ s ⁻¹)	U (ms ⁻¹)	Re	Fr
Wilga	9.5	0.5	5.5	1.16	0.25	$12 \ge 10^4$	0.17
Narew	15.0	2.5	13.0	5.32	0.17	$51 x 10^4$	0.05

Fig. 3 Flow structure and bathymetry before the weir (A) and water step (B).

- O Aeration process
- O Study sites and field design
- Results
- Conclusions

Fig. 4 DO curves for the weir: (A) DO concentration, (B) DO saturation

Fig. 5 DO curves for the water step: (A) DO concentration, (B) DO saturation

- Aeration process
- O Study sites and field design
- Results
- Conclusions

0.9 $E_{20}\left(\cdot\right)$ 0. 0.721:50 03:50 09:50 15:50 Time (HH:MM) в 0.75 0.7 0.65 $E_{20}\left(\cdot\right)$ 0.6 0.55 0.5 0.45 15:50 21:50 03:50 09:50 Time (HH:MM)

Α

1.1

1

Fig. 6 Gas transfer efficiency (E_{20}) fluctuations over time (black line) with uncertainty (grey area): (A) weir, (B) water step.

- O Aeration process
- O Study sites and field design
- Results
- Conclusions

Fig. 7 Scatter plots of E₂₀ vs. deficit ratio: (A) weir, (B) water step.

- Aeration process
- O Study sites and field design
- Results
- Conclusions

Fig. 8 Scatter plots of E₂₀ vs. upstream oxygen deficit: (A) weir, (B) water step.

Fig. 9 Scatter plots of E₂₀ vs. upstream DO concentration: (A) weir, (B) water step.

- O Aeration process
- O Study sites and field design
- Results
- Conclusions

Fig. 10 Power spectral density of DO time curves: (A) weir on the Narew river, (B) water step on the Wilga river.

- ✓ High frequencies -> the noise affects the shape of the spectra;
- \checkmark Two slopes in the PSD of DO_{down(2)};
- ✓ Low frequency range (weir) -> sharp decay (~power function).

- Aeration process
- O Study sites and field design
- Results
- Conclusions

Fig. 11 Aeration efficiencies derived from predictive equations

- Aeration process
- O Study sites and field design
- O Results
- Conclusions
 - □ Gas transfer efficiencies can be calculated with a fair degree of accuracy;
 - Hydraulic structures elevate DO concentrations downstream and attenuate daily variations of DO resulting from the changes of water temperature and biological activity.
 - Transfer efficiency ratio varies within each day (under constant head loss and discharge) depending on the oxygen deficit of the inflowing water -> these variations should be taken into account when predicting downstream oxygen concentration.

- Aeration process
- \odot $\,$ Study sites and field design
- O Results
- \bigcirc Conclusions

Thank you for your attention