Vegetation and flow rate impact on instream longitudinal dispersion and retention processes

Jevgenijs Savickis

Dr. Mattia Zaramella Dr. Andrea Bottacin-Busolin Prof. Gunnar Nützmann Prof. Andrea Marion

Università degli Studi di Padova

(

Objectives	Define influence of <i>vegetation</i> and <i>flow rate</i> on mixing and transport processes
Actions	Performed tracer tests in natural stream (Erpe) Evaluated parameters with the STIR coding
Findings	Effects of reach length on dispersion coeff. and storage zone parameters Impact of vegetation and flow rate on retention and mixing processes Importance of equipment (fluorometers)

Continuous (step) injection provides more reliable parameter estimates. (*Wagner and Harvey, WRR-1997*)

- Transient Storage model (TSM)
 Bencala & Walters (1983)
 Runkel & Broshears (1991) OTIS and OTIS-P
- Advection-dispersion-mass-transport equation (ADMTE) Huggerty et al. (2000)
- Solute Transport in Rivers (*STIR*) Marion et al. (2008)

Single storage zone analysis

_ Multiple storage zone analysis

• Tracer tests

What was done

Performed in 2013 (Erpe stream, Germany)

• Equipment

Applied fluorometers with better detection characteristics

• Tracer test

Conducted in 2014 (Erpe stream, Germany)

• Parameters

Evaluated

Erpe test (2013)

- Reach lengths Reach 0-1 = 325.0 mReach 0-2 = 520.8 m
- Flow rate
 - $0.19 \text{ m}^{3/\text{s}}$
- Tracer test
 - Rhodamine water tracer (RWT) Continuous (step) injection nerged fluorometers
 - Immerged fluorometers SCUFA (10⁻³) YSI 6920 (10⁻³)

Erpe test (2013)

 Naturally developed vegetation Thick reparian and submerged

• Recorded breakthrough curves

Erpe test (2014)

- Reach lengths
 Reach 0-1 = 210.0 m
 Reach 0-2 = 716.0 m
- Flow rate 0.08 m³/s
- Tracer test
 - Rhodamine water tracer (RWT) Continuous (step) injection
- Fluorometers GGUN-FL30 (10⁻⁴)

Erpe test (2014)

• Vegetation clean condition Removed by authorities

Recorded breakthrough curves

Different

Vegetation conditions Reach lengths Flow rate Fluorometers

STIR coding calibration

Erpe results (2013)

Erpe results (2014)

Aquatic Interface

Erpe results (2013 vs 2014)

- Increase of flow rate and vegetation improves longitudinal dispersion
- For short reaches, vegetation is enable to balance out flow rate effects
- Dispersion coefficient is more influenced by flow rate rather than reach length
- Resolution of BTC tail strongly affects the hyporheic residence time

Questions

Università degli Studi di Padova

