Testing predictions of changes in the abundance and community structure of benthic invertebrates and fish after flow restoration in a large river (French Rhône)

Bernhard Statzner<sup>1</sup> & Nicolas Lamouroux<sup>2</sup>

<sup>1</sup>Former Research Director National Science Research Center (CNRS), France

<sup>2</sup>Research Director

National Research Institute in Sciences and Technologies for the Environment and Agriculture (IRSTEA), France

## Structure

**1) Introduction: the risk of KISS-based restoration strategies** 

# 2) Preparatory research

2.1) Linking biological responses to local hydraulics

2.2) Statistical hydraulic modelling: predicting local conditions using simple reach characteristics

# 3) The Rhône restoration project

3.1) Abundance and community structure of benthic invertebrates

3.2) Abundance and community structure of fish

3.3) Functional biological traits of invertebrate & fish communities

# 4) Conclusions

**1) Introduction: the risk of KISS-based restoration strategies →** expert opinion!!!

Expert opinion ok for the obvious, e.g. weed control in nutrient-rich lowland streams









### Too risky for flow restoration in regulated rivers – requires 4 essentials

# i) Ecology: Niche concept $\rightarrow$ Flow responses of organisms

Simulium ornatum (blackfly)

Drift loss (%) of defined size classes of trout (*Salmo trutta fario*), a gammarid (*Gammarus pulex*) and a mayfly (*Ephemerella ignita*) after sudden experimental shear stress increase (Re =  $U_* \times body$  length / v)



Phillipson (1956)

Great mobility → Frequency of microhabitats more important than spatial arrangement of microhabitats



 ii) Hydrology: Hydraulic modeling → Frequencies of local physical conditions in river reaches



For example:

mean column velocity, Froude number, Reynolds number, shear stress, shear velocity

iii) Economics: Pareto law or "80-20 principle" → cost effective restoration



iv) Wide applicability of predictions obtained by linking models from i), ii) and iii)



## 2) Preparatory research (most in Germany, before 1990) 2.1) Linking biological responses to local hydraulics



FROU: Fr =  $\frac{U}{\sqrt{a} \cdot D}$  (2)

SHST :  $\tau_0 = g\rho SD$  (3)

SHVE 1: U<sub>\*</sub> =  $\sqrt{\frac{\tau_0}{\rho}}$  (4) SHVE 2: U<sub>\*\*</sub> =  $\frac{U}{5.75 \text{ lg}\left(\frac{12 \text{ D}}{\text{rps}}\right)}$  (5) SHVE 3: U<sub>\*\*\*</sub> =  $\frac{U}{5.75 \text{ lg}\left(\frac{12 \text{ D}}{\text{rps}}\right)}$  (6) SUBL 1 :  $\delta'_1 = \frac{11.5 \nu}{U_n}$  (7) SUBL 2:  $\delta'_2 = \frac{11.5 v}{U_{mm}}$  (8) SUBL 3:  $\delta'_3 = \frac{11.5 v}{U_{3} m}$  (9) **REYB** 1 : Re  $_{*}$  1 =  $\frac{U_{*}rpv}{v}$  (10)

REYB 2: 
$$Re_* 2 = \frac{U_{**}rps}{v}$$
 (11)  
REYB 3:  $Re_* 3 = \frac{U_{***}rpv}{v}$  (12)

24

#### Blackfly larvae (Odagmia ornata)



Competing alternative methods: Substrate size vs. PHABSIM vs. Hydraulics (213 quantitative samples, hydraulics requiring ~40 physical measures per sample)



| $FROU: Fr = \frac{U}{\sqrt{g \cdot D}} $ (2)                                                    |
|-------------------------------------------------------------------------------------------------|
| SHST:τ₀ = gpSD (3)                                                                              |
| SHVE 1: U * = $\sqrt{\frac{\tau_0}{\rho}}$ (4)                                                  |
| SHVE 2: U <sub>**</sub> = $\frac{U}{5.75 \text{ lg}\left(\frac{12 \text{ D}}{5.75}\right)}$ (5) |
| SHVE 3: $U_{***} = \frac{U^{(123)}}{5.75 \text{ lg} \left(\frac{12D}{5DV}\right)}$ (6)          |
| SUBL 1: $\delta'_1 = \frac{11.5 v}{U_*}$ (7)                                                    |
| SUBL 2: $\delta'_2 = \frac{11.5 v}{U * *}$ (8)                                                  |
| SUBL 3: $\delta'_3 = \frac{11.5 v}{U_{***}}$ (9)                                                |
| <b>REYB</b> 1 : Re $_{*}$ 1 = $\frac{U_{*}rpv}{v}$ (10)                                         |
| <b>REYB</b> 2:-Re $_{*}$ 2 = $\frac{U_{**}rps}{v}$ (11)                                         |
| <b>REYB</b> 3: Re $_{*}$ 3= $\frac{U_{***} rpv}{v}$ (12)                                        |
| Too confusing eqs,                                                                              |
| need of simpler                                                                                 |
| solution                                                                                        |





#### Simplify & stay fat – use FST-hemispheres!!









Density of the mayfly *Baetis rhodani* in 19 surveys (various seasons) in 8 independent German streams: 37% of density variation explained by a generalized average model (beta functions)



#### Average "preferred" bottom shear stress: France vs. Germany



Indication for wide applicability of predictions

# 2.2) Statistical hydraulic modelling: predicting local conditions

using simple reach characteristics (e.g. Q, D, W  $\rightarrow \tau_0$ )

Does not work for channels without depth and width variability at a given Q



Data collected for design of instream flow management in the late 1980s, after experimentally varying Q in various river types in Bavaria and the Ruhr area; for each Q, random sampling of local FST-hemisphere number (n = 100), water depth (n = 100) and stream width (n = 20)



- A = Amplitude
- rm=Mean radius of curvature

random spacing related to stream width, as L ≈ 7 – 11 widths (Leopold et al. 1964)



egative exponential and normal

Mean reach Fr = f (Q g, mean D, mean w)

In (Froude Number<sup>2</sup>)



<u>Hydraulic model</u>: Predictions of changing frequency distribution of shear stress in a stream segment from discharge, mean depth and width



Published in 1992

## 3) The Rhône restoration project

1992: Compagnie Nationale du Rhône (CNR) starts financing research focussed on physical habitat restoration of the Rhône



Aim: To correct the physical, ecological, social and cultural effects of river
development carried out during the 19th century and by the CNR from 1936 to 1986
➔ Ecological recovery of a fast-flowing river with diverse floodplain channels





# Minimum flow increase in by-passed main channel (d)

Connectivity increase of floodplain channels (dredging, up- and downstream reconnections)

#### Towards a predictive restoration ecology: a case study of the French Rhône River Freshwater Biology (in press) Guest Editors: NICO LAMOUROUX, JIM GORE, FABIO LEPORI & BERNHARD STATZNER

Lamouroux N., Gore J.A., Lepori F. & Statzner B. The ecological restoration of large rivers needs science-based, predictive tools meeting public expectations: an overview of the Rhône project.

Mérigoux S., Forcellini M., Dessaix J., Fruget J.-F., Lamouroux N. & Statzner B. Testing predictions of changes in benthic invertebrate abundance and community structure after flow restoration in a large river.

Lamouroux N. & Olivier J.-M. Testing predictions of changes in fish abundance and community structure after flow restoration in four reaches of a large river

Dolédec S., Castella E., Forcellini M., Olivier J.-M., Paillex A. & Sagnes P. The generality of changes in the trait composition of fish and invertebrate communities after flow restoration in a large river.

| Reach | Q <sub>mean</sub><br>(m³s⁻¹) | Q <sub>min</sub> (m <sup>3</sup> | s⁻¹)   | U <sub>min</sub> (ms | -1)   |
|-------|------------------------------|----------------------------------|--------|----------------------|-------|
|       |                              | Before                           | After  | Before               | After |
| PBE   | 550                          | 10-20                            | 100    | 0.08                 | 0.36  |
| CHAU  | 270                          | 10-20                            | 50-70  | 0.35                 | 0.74  |
| BELL  | 270                          | 25-60                            | 60-100 | 0.25                 | 0.44  |
| BREG  | 280                          | 80-150                           | 80-150 | 0.39                 | 0.39  |

| Reach | Fish data ( | (surveys) |  |
|-------|-------------|-----------|--|
|-------|-------------|-----------|--|

Invertebrate data (surveys)

|                | •                                                                             |                                                                                                                         |                                                                                                                                                                                   |
|----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Before         | After                                                                         | Before                                                                                                                  | After                                                                                                                                                                             |
| 1995-1999 (7)  | 2001-2100 (12)                                                                | 1995-1999 (8)                                                                                                           | 2001-2008 (8)                                                                                                                                                                     |
| 1985-2004 (33) | 2004-2010 (7)                                                                 | 1997-2002 (7)                                                                                                           | 2006-2010 (8)                                                                                                                                                                     |
| 1985-2004 (20) | 2005-2010 (6)                                                                 | Notavailable                                                                                                            | Notavailable                                                                                                                                                                      |
| 1985-2005 (28) | 2006-2010 (5)                                                                 | Notavailable                                                                                                            | Notavailable                                                                                                                                                                      |
|                | Before<br>1995-1999 (7)<br>1985-2004 (33)<br>1985-2004 (20)<br>1985-2005 (28) | BeforeAfter1995-1999 (7)2001-2100 (12)1985-2004 (33)2004-2010 (7)1985-2004 (20)2005-2010 (6)1985-2005 (28)2006-2010 (5) | BeforeAfterBefore1995-1999 (7)2001-2100 (12)1995-1999 (8)1985-2004 (33)2004-2010 (7)1997-2002 (7)1985-2004 (20)2005-2010 (6)Not available1985-2005 (28)2006-2010 (5)Not available |

## 3.1) Abundance and community structure of benthic invertebrates



Use for reach scale predictions of relative habitat suitability changes (= Indensity changes) of taxa (species, genera or families) for target minimum flows 10 → 100 m<sup>3</sup>s<sup>-1</sup> 10 → 50 m<sup>3</sup>s<sup>-1</sup>

#### Hemisphere preferences after data from Germany or the Upper Rhône river (25% of data from CHAU)

÷

Appendix S1. Normalised <u>ln</u>-densities (maximum = 1 see methods) of <u>taxa</u> across hemisphere numbers (noted f0 to f19) calculated from *beta* type mode. R<sup>2</sup>TAX (variance in <u>ln</u>-density of <u>taxa</u> explained by the model) and AVGFST (preferred hemisphere number) values are given for each <u>taxa</u>. With ad = adults.

| Groupes    | Taxons                                | R <sup>2</sup> TAX | AVGFST | f0   | f1   | f2   | f3   | f4   | f5   | f6   | f7   | f8   | f9   | f10  | f11  | f12  | f13  | f14  | f15  | f16  | f17  | f18  | f19  |
|------------|---------------------------------------|--------------------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Tricladida | Dendrocoelum lacteum (Müller)         | 0.01               | 7.57   | 0.96 | 1.00 | 1.00 | 0.99 | 0.97 | 0.94 | 0.91 | 0.87 | 0.83 | 0.79 | 0.74 | 0.69 | 0.64 | 0.58 | 0.52 | 0.46 | 0.39 | 0.32 | 0.24 | 0.14 |
|            | Dugesia polychroa-lugubris (Schmidt)  | 0.13               | 12.73  | 0.06 | 0.09 | 0.11 | 0.13 | 0.15 | 0.17 | 0.19 | 0.21 | 0.24 | 0.26 | 0.28 | 0.31 | 0.34 | 0.37 | 0.41 | 0.46 | 0.52 | 0.60 | 0.73 | 1.00 |
|            | Dugesia tigrina (Girard)              | 0.15               | 10.69  | 0.15 | 0.27 | 0.39 | 0.49 | 0.58 | 0.66 | 0.74 | 0.81 | 0.86 | 0.91 | 0.95 | 0.98 | 1.00 | 1.00 | 0.99 | 0.96 | 0.92 | 0.84 | 0.73 | 0.55 |
|            | Polycelis nigra-tenuis (Müller)-Ijima | 0.14               | 5.69   | 1.00 | 0.72 | 0.58 | 0.49 | 0.43 | 0.37 | 0.33 | 0.29 | 0.26 | 0.23 | 0.20 | 0.18 | 0.15 | 0.13 | 0.11 | 0.09 | 0.07 | 0.05 | 0.04 | 0.02 |
| Hirudinea  | Erpobdella octoculata (L.)            | 0.00               | 8.63   | 0.46 | 0.65 | 0.77 | 0.86 | 0.92 | 0.97 | 0.99 | 1.00 | 1.00 | 0.98 | 0.95 | 0.91 | 0.86 | 0.79 | 0.72 | 0.64 | 0.54 | 0.43 | 0.31 | 0.18 |
|            | Glossiphonia complanata (L.)          | 0.00               | 8.39   | 0.53 | 0.71 | 0.83 | 0.90 | 0.96 | 0.99 | 1.00 | 1.00 | 0.99 | 0.96 | 0.92 | 0.88 | 0.82 | 0.75 | 0.68 | 0.59 | 0.50 | 0.40 | 0.28 | 0.16 |
| Mollusca   | Ancylus fluviatilis Müller            | 0.42               | 13.20  | 0.01 | 0.03 | 0.06 | 0.10 | 0.14 | 0.18 | 0.23 | 0.29 | 0.34 | 0.40 | 0.46 | 0.53 | 0.60 | 0.66 | 0.73 | 0.80 | 0.86 | 0.92 | 0.97 | 1.00 |
|            | Corbicula fluminea (Müller)           | 0.01               | 7.95   | 0.86 | 0.95 | 0.99 | 1.00 | 1.00 | 0.99 | 0.97 | 0.94 | 0.91 | 0.88 | 0.83 | 0.79 | 0.73 | 0.68 | 0.62 | 0.55 | 0.47 | 0.39 | 0.30 | 0.18 |
|            | Dreissena polymorpha (Pallas)         | 0.25               | 12.26  | 0.01 | 0.05 | 0.09 | 0.15 | 0.23 | 0.31 | 0.39 | 0.48 | 0.58 | 0.67 | 0.75 | 0.83 | 0.90 | 0.95 | 0.99 | 1.00 | 0.98 | 0.92 | 0.79 | 0.57 |
|            | Physidae                              | 0.02               | 9.40   | 0.26 | 0.43 | 0.57 | 0.69 | 0.78 | 0.86 | 0.92 | 0.96 | 0.99 | 1.00 | 1.00 | 0.98 | 0.94 | 0.90 | 0.83 | 0.75 | 0.65 | 0.54 | 0.40 | 0.23 |
|            | Pisidium spp.                         | 0.17               | 5.85   | 1.00 | 0.79 | 0.68 | 0.59 | 0.53 | 0.47 | 0.42 | 0.38 | 0.34 | 0.31 | 0.27 | 0.24 | 0.21 | 0.18 | 0.15 | 0.13 | 0.10 | 0.07 | 0.05 | 0.03 |
|            | Potamopyrgus antipodarum (Gray)       | 0.14               | 6.19   | 0.92 | 0.99 | 1.00 | 0.97 | 0.93 | 0.88 | 0.81 | 0.74 | 0.67 | 0.60 | 0.52 | 0.45 | 0.38 | 0.31 | 0.25 | 0.19 | 0.13 | 0.09 | 0.04 | 0.01 |
|            | Sphaeriidae                           | 0.05               | 6.57   | 0.95 | 1.00 | 1.00 | 0.97 | 0.93 | 0.88 | 0.83 | 0.77 | 0.71 | 0.64 | 0.58 | 0.51 | 0.45 | 0.38 | 0.32 | 0.25 | 0.19 | 0.13 | 0.08 | 0.03 |
|            | Theodoxus fluviatilis (L.)            | 0.42               | 13.05  | 0.01 | 0.02 | 0.05 | 0.09 | 0.14 | 0.20 | 0.27 | 0.34 | 0.42 | 0.50 | 0.59 | 0.68 | 0.76 | 0.84 | 0.91 | 0.96 | 1.00 | 1.00 | 0.95 | 0.80 |
|            | Valvata spp.                          | 0.02               | 9.30   | 0.28 | 0.46 | 0.60 | 0.71 | 0.80 | 0.88 | 0.93 | 0.97 | 0.99 | 1.00 | 0.99 | 0.97 | 0.93 | 0.88 | 0.82 | 0.73 | 0.64 | 0.52 | 0.38 | 0.22 |
| Crustacea  | Asellidae                             | 0.20               | 5.73   | 1.00 | 0.94 | 0.88 | 0.81 | 0.74 | 0.68 | 0.61 | 0.55 | 0.49 | 0.43 | 0.37 | 0.32 | 0.26 | 0.22 | 0.17 | 0.13 | 0.09 | 0.06 | 0.03 | 0.01 |
|            | Asellus aquaticus (L.)                | 0.10               | 6.43   | 1.00 | 0.87 | 0.78 | 0.71 | 0.66 | 0.60 | 0.56 | 0.51 | 0.47 | 0.43 | 0.39 | 0.35 | 0.31 | 0.27 | 0.24 | 0.20 | 0.16 | 0.12 | 0.09 | 0.05 |
|            | Gammarus fossarum Koch                | 0.03               | 8.72   | 0.88 | 0.95 | 0.98 | 0.99 | 1.00 | 1.00 | 0.99 | 0.98 | 0.97 | 0.95 | 0.93 | 0.91 | 0.88 | 0.84 | 0.81 | 0.76 | 0.71 | 0.64 | 0.56 | 0.44 |
|            | Gammarus pulex (L.)                   | 0.01               | 9.46   | 0.30 | 0.47 | 0.61 | 0.71 | 0.80 | 0.87 | 0.92 | 0.96 | 0.99 | 1.00 | 1.00 | 0.98 | 0.96 | 0.91 | 0.86 | 0.79 | 0.70 | 0.59 | 0.46 | 0.28 |



-0.3

reduce variation among yrs, mean of before and after; requires several yrs of data before **and** after!!!!



ASEL PMER

EOCT CORI

ETEN VASP PACU

CLUC CFLU VPIS TFLU RABL TANY CHSP ORTH TASP







Predicted In-density change

TFLU: specialized algal grazer

*GFOS* & *GASP*: gammarids affected by *Dikerogammarus* invasion

| Reach | Target minimum flow |             |           |       |  |  |  |  |  |  |
|-------|---------------------|-------------|-----------|-------|--|--|--|--|--|--|
|       | R <sup>2</sup>      | а           | Ъ         | Р     |  |  |  |  |  |  |
| PBE   | 0.746               | 0.016±0.019 | 1.92±0.52 | <10-6 |  |  |  |  |  |  |
| CHAU  | 0.297               | 0.065±0.115 | 1.58±0.94 | 0.002 |  |  |  |  |  |  |

y = a + bx (incl. 95% CLs)



Range: target  $\rightarrow$  mean observed discharge

# 3.2) Abundance and community structure of fish

Same approach as for invertebrates

- a) Statistical hydraulic models predicting local point velocity and depth using reach scale characteristics, developed and validated with independent data from a wide range of rivers
- b) Point velocity and depth preference models of 14 abundant fish species, developed with independent data from three river reaches
- c) Linking a) & b) to obtain reach scale predictions of relative habitat suitability (= In-abundance) changes of species

PBE:  $10 \rightarrow 100 \text{ m}^3\text{s}^{-1}$ CHAU:  $10 \rightarrow 50 \text{ m}^3\text{s}^{-1}$ BELL:  $25 \rightarrow 60 \text{ m}^3\text{s}^{-1}$ BREG:  $80 \rightarrow 80 \text{ m}^3\text{s}^{-1}$ 



#### PCA on mean reach In-densities



Years scores - Axis1



## 3.3) Functional biological traits of invertebrate & fish communities

A) Maximal size (mm) A1)≤5 A2)>5-10 A3)>10-20 A4)>20-40 A5)>40 B) No. of descendants per reproductive cycle **B1**)≤100 B2)>100-1000 B3)>1000-3000 B4)>3000 C) Voltinism C1)≤Bivoltine C2) Univoltine C3)≥Semivoltine D) No. of reproductive cycles per individual D1)1 D2)2 D3)>2 E) Life duration of adults (d) E1)≤1 E2)>1-10 E3)>10-30 E4)>30-365 E5)>365

- K) Body form K1) Streamlined K2) Flattened K3) Cylindrical K4) Spherical L) Feeding habits L1) Engulfer L2) Shredder L3) Scraper L4) Deposit-feeder L5) Filter-feeder, active L6) Filter-feeder, passive L7) Piercer M) Food (type and size in mm) M1) Detritus ≤1 M2) Detritus >1-10 M3) Detritus >10 M4) Plants ≤1 M5) Plants >1-10 M6) Plants >10 M7) Animals ≤1 M8) Animals >1–10 M9) Animals > 10N) Respiration technique of aquatic stages N1) Tegument
  - N2) Cill



Invertebrates: 12 traits, 54 categories Fish: 21 traits, 75 categories

Linking predictions on abundance changes to changes in biological traits categories

→ predicting general functional community chacteristics



Observed vs. Predicted changes of categories by trait groups



Predicted

# 4) Conclusions

Predictive habitat models (available at http://www.irstea/dynam) combining simple statistical physical and biological models

- are transferable across river sites, rivers & regions
- provide reliable predictions if

*# physical changes are clear enough (PBE > CHAU >BELL >BREG)* 

# enough observations are available before **and!!!** after restoration # predicted scenarios (e.g. discharge changes) are realistic

- provide better (i.e. more reliable) predictions for
  - *# benthic invertebrates than fish (different evolutionary level, relevance of physical model, sampling efficiency)*
  - *# general functional community characteristics (i.e. biological traits) than for taxon abundance and thus structural community charactersitics*