# Development of a laboratory system and 2D routing analysis to determine solute mixing within aquatic vegetation

Patrick West\*, James Hart\*, Ian Guymer\*, Virginia Stovin◆

- \*University of Warwick, UK
- ◆University of Sheffield, UK







# Background

- Diffuse pollution major problem
- Intensive use of pesticides, fertilizers from agriculture & heavy-metals motorways
- Interception of wastewater using ponds and wetlands (SuDS)
- Retention time influences treatment









#### Research Aims

- Quantify mass transport in vegetated shear layers/interfaces
- Develop precise tracer detection system
- Investigate for a range of variables (e.g. flow rate, plant age, plant density)



# Methodology

Two tracer detection methods compared.

- Point probe fluorometry
- Laser Induced Fluorometry (LIF)

Emergent artificial vegetation is used as a test case. Temporal and spatial observations of tracer elucidate mixing

characteristics.

Quantify **Transverse** and

**longitudinal dispersion** coefficients.





## 1. Point Probe Fluorometry





- Dye injected continuously
- Temporal concentration recorded



## Point Probe Fluorometry - issues

- Large spread in data
- Low mixing causes observation difficulties
- Intrusive and disruptive
- Spatially variable mixing properties cannot be extensively recorded e.g. poor spatial resolution.











### 2. Laser Induced Fluorometry (LIF)

- Laser directed through flow
- Camera images from below "black-out" conditions
- Fluorescence proportional to Rhodamine 6G concentration
- Laser/camera system calibrated with known concentrations







# LIF Results

- Centreline injection, mid-depth
- 5 s pulse injections, 10 x repeats + 10 min constant injection
- 5Hz imaging at x = 1 m & x = 2 m downstream







## LIF Results – 2D Routing

- Upstream 2-dimensional concentration distribution fitted to downstream distribution using Gaussian transfer function.
- Process repeated to maximise fit using optimisation.
- Four parameters optimised: Longitudinal dispersion coefficient, transverse mixing coefficient, and depth-mean stream-wise and transverse velocities.



# LIF Results – 2D Routing

Single 5s pulse (1.8 l/s), white lines = routed distribution



#### LIF benefits over Point Probe

- Spatially extensive
- Non-intrusive
- Greater resolution
- Reasonable error for all 10x repeats
- More reliable

| Q<br>(I/s) | u measured<br>(m/s) | u travel time (m/s) | <i>D<sub>x</sub></i> x 10 <sup>-5</sup> (m <sup>2</sup> /s) | D <sub>y</sub> x 10 <sup>-5</sup><br>(m²/s) | Fit<br>(R <sup>2</sup> ) |
|------------|---------------------|---------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------|
| 1.8        | 0.010               | 0.013±0.00015       | 8.66±16.7%                                                  | 2.42±7.4%                                   | 0.90±0.01                |
| 2.4        | 0.013               | 0.017±0.00016       | 17.0±51.3%                                                  | 2.97±18.7%                                  | 0.84±0.02                |
| 3.6        | 0.020               | 0.026±0.00007       | 19.0±11.1%                                                  | 4.22±2.5%                                   | 0.91±0.02                |



## Conclusion

- Preliminary tracer tests conducted in full vegetated, artificial, emergent vegetation.
- LIF more suitable than point probe fluorometry for observing mixing.
- LIF is Non-intrusive & spatially extensive.
- 2D routing useful technique.
- Heterogeneous flow fields demand alternative analysis.



### Current Work...

- Application of technique to shear vegetation and different vegetation densities – interface interactions
- Live vegetation seasonal effects
- Comparison between real and artificial





# Thank you for listening!



Any questions?



















