ANALYSIS ON YELLOW RIVER DELTA EVOLUTION WITH FLUXES OF RUNOFF AND SEDIMENT

HONGLING SHI CHINA INSTITUTE OF WATER RESOURCES AND HYDROPOWER RESEARCH (IWHR)

CONTENTS

Introduction

Research Methods

Relationship between Land Area and Incoming Runoff/Sediment of YRD

Variation of land area and fluxes of runoff and sediment

Measures to deal with the shortage of water and sediment

INTRODUCTION

- The Yellow River is a well-known high sediment laden river on Earth. It carries lots of fine sediment flowing down to the Bohai Sea, builds new land continuously.
- The normal coastal areas are in alternations of extending by siltation of river sediment and retrograding by erosion of tidal current, so does the Yellow River Delta (YRD).

INTRODUCTION

To find the regulation of the YRD evolution

keep concerns on these variations make clear the crises, and put forward the strategies

confirm the relationship

RESEARCH METHODS

M-K statistic test for Trend analysis

Non-parametric statistical

Giving a time-series sample $(x_1, x_2, ..., x_n)$, constructing a rank sequence:

$$S_{k} = \sum_{i=2}^{k} \sum_{j=1}^{i-1} sign(x_{i} - x_{j}) \qquad (k = 2, 3, 4, ..., n)$$

$$sign(x_{i} - x_{j}) = \begin{cases} +1 & whenx_{i} > x_{j} \\ 0 & else \end{cases} (j = 1, 2, 3, ..., i-1)$$

Assuming the time series stochastic independence, definite the statistics:

$$UF_{k} = \frac{\left[S_{k} - E(S_{k})\right]}{\left[Var(S_{k})\right]^{1/2}} \qquad (k = 2, 3, 4, ..., n)$$

$$E(S_{k}) = \frac{n(n-1)}{4}$$

$$Var(S_{k}) = \frac{n(n-1)(2n+5)}{72} \qquad |U_{0.05/2}| > \text{or} < 1.96$$

Rank sum test for Abrupt changes analysis

Cumulative time sequence and test

Research sequence $x_1, x_2, ..., x_n$ and reference sequence $y_1, y_2, ..., y_n$. Compute their cumulative time sequences respectively:

$$g_{j} = \sum_{i=1}^{j} x_{t}$$

$$m_{j} = \sum_{i=1}^{j} y_{t}$$

$$(j = 1, 2, \dots, n)$$

Assume a hydrologic sequence $x_1, x_2, ..., x_{\tau}$, $x_{\tau+1}, x_{\tau+2}, ..., x_n$, Rank the sequence and number it

$$U = \frac{W - \left(\frac{n_1(n_1 + n_2 + 1)}{2}\right)}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}$$

RELATIONSHIP BETWEEN THE LAND

Keep concerns on these variations Make clear the crises, and put forward the strategies

Confirm the relationship

RELATIONSHIP BETWEEN THE LAND AREA & FLUX OF RUNOFF / SEDIMENT

> Variation of the land area of the Yellow River mouth

- The continent-building area was 2500 km² after years of 1855. In the different periods, the annual increasing rate of continent-building area are from 23.6km²/a drop to 9.5km²/a.
- with the annual net silting rate decreased, both the incoming annual runoff and sediment load in the different period were deduced

Peroid IncomingRun /10 ⁹ m ³ /a		Incoming sediment load /10 ⁹ t/a	Net silting Area /km ²	Net silting Rate /km²/a	
1855~1954	F a Autor Sta		1510.0	23.6	
1954~1976	44.51	1.148	548.3	24.9	
1976~1980	30.66	0.866	110.0	25.9	
1980~1992	26.00	0.613	183.0	15.1	
1992~2001	10.90	0.306	77.3	9.5	

Continent-building area after 1855 in YRD

Note: the runoff and sediment load are from Lijing station field data.

RELATIONSHIP BETWEEN THE LAND AREA & FLUX OF RUNOFF / SEDIMENT

> Variation of the land area of the Yellow River mouth

- The land area of the Yellow River mouth from 1976 to 2006 was continuing in growth.
- The variation of land area could be divided to three stages according to the growth rate. 1976 to 1986, +19.86 km²/a;1986 to 2000, +9.95 km²/a; after 2000, +5.96 km²/a.
- Based on regression test, the land area growing tendency is fit with the quadric curve very well.

load/100

RELATIONSHIP BETWEEN THE LAND AREA & FLUX OF RUNOFF / SEDIMENT

Variation of Fluxes of runoff and sediment

- The mean annual runoff of Lijin station was 30.3 billion m³ and sediment load was 0.73 billion t.
- Both the annual runoff and annual sediment load flowing though the Yellow River Delta were in fluctuated decrease.

Years	Mean Annual runoff /10 ⁹ m ³	Mean Annual sediment load /10 ⁹ t	Mean Annual Sediment concentration /kg/ m ³	
1952~1959	47.4	1.37	28.86	Sm ⁰ D ¹
1960~1969	50.1	1.09	21.73	
1970~1979	31.1	0.90	28.86	funna hunneff
1980~1989	28.6	0.64	22.33	1 mm
1989~1999	14.1	0.39	27.71	q
2000~2009	14.1	0.13	9.532	
1952~2009	30.3	0.73	24.12	

Variation of annual runoff and annual sediment load at Lijin station

RELATIONSHIP BETWEEN THE LAND AREA & FLUX OF RUNOFF / SEDIMENT

- It is not difficult to find that the yearly accumulated runoff or sediment load is well consistency with the annual land area
- The perfect linear correlation about land area & accumulated runoff/sediment load is obviously

(a)Land area and runoff (b) land area and sediment load Relationship between land area and the hydrological data of Yellow River delta

TRENDS OF FLUXES OF RUNOFF AND SEDIMENT

Keep concerns on these variations Make clear the crises, and put forward the strategies

Confirm the relationship

TRENDS OF FLUXES OF RUNOFF AND SEDIMENT

>Tendency test of runoff and sediment Fluxes

- Based on M-K statistics test, the final M-K statistics from 1952 to 2009 of annual runoff and annual sediment load of Lijin station are -6.20 and -6.29.
- This manifested abnormally sharp declining trends on both the annual runoff and sediment load.

M-K test	Test for runoff	Test for sediment load
Values	-6.20	-6.29
Manifest for Tendency	Sharp drop	Sharp drop

M-K tests for annual runoff and annual sediment load of Lijin station

TRENDS OF FLUXES OF RUNOFF AND SEDIMENT

Leap test of runoff and sediment Fluxes

Identification of abrupt change points at Lijin station

Based on the curve of cumulative time sequence, it can be seen that both the annual runoff and sediment load changed abruptly with an obvious turning point in the year of1968, 1986 and the year of 1997

The above mentioned years for both runoff and sediment are pass the rank sum test and show an obvious leap.

Leap	test	for	Lijin	stat	ion
------	------	-----	-------	------	-----

	Daniad	1952-	1968-	1986-	1997-		
Period		1967	1985	1996	2009		
Samp	le number	16 42					
Statistical	runoff	4.54					
test value	sediment load	3.90					
Sample number		2	4	3.	4		
Statistical	runoff		-5.9	0			
test value	sediment load	-5.59					
Sample number			45		13		
Statistical test value	runoff	-4.39					
	sediment load	-5.08					

Keep concerns on these variations Make clear the crises, and put forward the strategies

Confirm the relationship

Sources of the water in YRD

The local YRD yields little water resources:

- The direct surface runoff by precipitation is $450 \times 10^6 \text{m}^3$;
- except brine, salt water or brackish water which are more than 90% of the total, the underground water useful for agriculture or domestic consumption is only 58 × 10⁶m³.

The Yellow River flows through the Delta, and supplies lot of foreign water, $30.3 \times 10^9 \text{m}^3$

The runoff coming from the Yellow River as the main fresh water resources of the Delta, will keep the balance of local eco-system.

Sources of the sediment in YRD

 Among the sediment load transported by the Yellow River, 22% of the incoming sediment load deposited in the river channel, 47% in the estuary, and the rest 32% carried by tidal waves to the sea area deeper than 15m.

	Incoming		Deposition in river mouth		Deposition in littoral		Transport to sea	
Water way	Period	form YR /bill t	volume /bill t	Account to incoming/%	volume /bill t	Account to incoming/%	Volume /bill t	Account to Incoming/%
Shenxiangou	1953-1964	13.03	3.4	26	4.7	36	4.93	38
Diaokouhe	1964-1976	14.28	2.86	20	6.12	43	5.3	37
Qingshuigou	1976-1980	3.33	1.03	31	1.57	47	0.73	22
	1980-1992	7.38	1.19	16	4.82	65	1.37	19
	1992-2000	2.74	0.36	13	1.82	66	0.56	20
	1976-2000	13.45	2.58	19	8.21	61	2.66	20
Summary	1953-2000	40.76	8.84	22	19.03	47	12.89	32

Sediment as resources mainly uses to continent-building.

Crisis brought by less runoff

• Less runoff will decrease the replenishment of fresh water for wetlands, destroy the balance of fresh and salinity, and bring a lot of ecological problems.

Crisis brought by less sediment

• With the less incoming sediment of the Yellow River, in addition to the rising sea level, the coast would be eroded quickly, even the net erosion would take place.

IWHR

CRISIS AND DEALING MEASURES TO SHORTAGE OF WATER AND SEDIMENT

> Rational allocation of the water and sediment resources

- The rational allocation of the water resources and sediment resources of the whole River basin should be put forward and carried out.
- Firstly, by legislation, the reservation measures of water source region should be strengthened; the schemes of water allocation and diversion in each district of the Yellow River basin should be sound planned.
- Secondly, the water-saving society should be educated and implemented both in ordinary life of citizens and agriculture irrigation.
- Thirdly, the structure of infrastructure should be modified. Such as some large water consumption projects should be strictly limited.

CONCLUSIONS

- There are close relationship between the YRD area and fluxes of runoff and sediment. The more fluxes, the faster the land area grows. The less fluxes, the slower the area builds;
- The annual runoff and sediment fluxes of the Yellow River estuary have obvious decreasing trends, which are great challenges to keep the balance of the YRD;
- To deal with the shortage of incoming water and sediment of the YRD, the rational allocation of the water and sediment resources is one of the principle measures.

