

Wojciech Artichowicz, PhD. Eng. Department of Hydraulic Engineering

Steady gradually varied flow governing equation

$$\frac{dE}{dx} = -S$$

where

- *x* spatial coordinate [L]
- E height of the mechanical energy of the flow [L]
- S the longitudinal slope of the mechanical energy [-]

Mechanical energy

 $E = h + \frac{\alpha \cdot Q^2}{2g \cdot A^2}$

$$S = \frac{n^2 \cdot Q^2}{A^2 \cdot R^{4/3}}$$

- *h* water stage level [L]
- α energy correctional coefficient [-]
- Q flow discharge [L³/T]
- n Manning's roughness coefficient [T/L^{1/3}]
- g gravitational acceleration [L²/T]
- A active flow area [L²]
- *R* hydraulic radius [L]

Steady gradually varied flow governing equation

$$\frac{d}{dx}\left(h + \frac{\alpha \cdot Q^2}{2g \cdot A^2}\right) = -\frac{n^2 \cdot Q^2}{A^2 \cdot R^{4/3}}$$

Initial value problem for ODE

GDAŃSK UNIVERSITY OF TECHNOLOGY Numerical analysis of steady gradually varied flow in open channel networks with hydraulic structures

Boundary problem for energy equation

GDAŃSK UNIVERSITY OF TECHNOLOGY Numerical analysis of steady gradually varied flow in open channel networks with hydraulic structures

Boundary problem for energy equation

Solution of the boundary problem for ODE

- the shooting method
- the finite difference method

Solution of the boundary problem for ODE

- the shooting method repetitive solution of initial value problems
- the finite difference method unified and generalized problem formulation and its solution

Discretization of the channel

Discrete approximation of the energy equation

$$E_{i+1} - E_i + \frac{\Delta x_i}{2} \left(S_i + S_{i+1} \right) = 0$$

i = 1, ..., M - 1

 Δx_i - distance between i^{th} and $(i+1)^{\text{th}}$ cross-section *i* - computational cross-section index *M* - number f computational cross-sections

Discrete form of energy equation interpretation

Discrete form of energy equation interpretation

Shooting method approach

Solution of the set of initial value problems for the energy equation

Finite difference method approach

Formulation and solution of the system of equations

$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$

Unknowns

water stage levels at each cross-section

$$h_i$$
 (*i* = 1, ..., *M*)

flow discharge

Including the flow direction

$$-\left(h_{i}+\frac{\alpha_{i}\cdot Q^{2}}{2g\cdot A_{i}^{2}}\right)+\left(h_{i+1}+\frac{\alpha_{i+1}\cdot Q^{2}}{2g\cdot A_{i+1}^{2}}\right)+\frac{\Delta x_{i}}{2}\left(\frac{Q^{2}\cdot n_{i}^{2}}{A_{i}^{2}\cdot R_{i}^{4/3}}+\frac{Q^{2}\cdot n_{i+1}^{2}}{A_{i+1}^{2}\cdot R_{i+1}^{4/3}}\right)=0$$

Including the flow direction

$$-\left(h_{i} + \frac{\alpha_{i} \cdot Q^{2}}{2g \cdot A_{i}^{2}}\right) + \left(h_{i+1} + \frac{\alpha_{i+1} \cdot Q^{2}}{2g \cdot A_{i+1}^{2}}\right) + \frac{\Delta x_{i}}{2} \left(\begin{array}{c}Q^{2} \cdot n_{i}^{2} \\ A_{i}^{2} \cdot R_{i}^{4/3} \end{array} + \begin{array}{c}Q^{2} \cdot n_{i+1}^{2} \\ A_{i+1}^{2} \cdot R_{i+1}^{4/3} \end{array}\right) = 0$$

 $Q^2 \to Q \cdot |Q|$

Including the flow direction

System of non-linear algebraic equations

Structure of the arising system of non-linear equations

 $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ $a_{1,1} \ a_{2,1} \ a_{2,2} \ \vdots$

Solution of non-linear system of algebraic equations Modified Picard's method

 $\mathbf{A}^* \cdot \mathbf{x}^{(k+1)} = \mathbf{h}$

$$\mathbf{A}^* = \mathbf{A} \left(\frac{\mathbf{x}^{(k-1)} + \mathbf{x}^{(k)}}{2} \right)$$

End of the iterative procedure

$$|h_i^{(k+1)} - h_i^{(k)}| < \mathcal{E}_h \quad i = 1, ..., M-1$$

$$|Q^{(k+1)} - Q^{(k)}| < \varepsilon_Q$$

 ε_h – water stage solution accuracy ε_Q – flow discharge solution accuracy k – iteration index

Including a hydraulic structure

 $Q = Q(h_j, h_{j+1})$

An example: weir

Rectangular weir discharge formula

$$Q = \frac{2}{3} \mu \cdot B \cdot \sqrt{2g} \left[\left(H_g + \frac{\alpha_j \cdot Q^2}{2g \cdot A_j^2} \right)^{3/2} - \left(\frac{\alpha_j \cdot Q^2}{2g \cdot A_j^2} \right)^{3/2} \right] \cdot \sigma$$
$$\sigma = 1.05 \cdot \left(1 + 0.02 \frac{H_d}{p_d} \right)_3^3 \sqrt{\frac{H_g - H_d}{H_g}}$$

- μ weir discharge coefficient [-]
- σ submersion coefficient [-]
- *B* weir width [L]

 H_g – water level above the crest before the weir [L] H_d – water level above the crest behind the weir [L] p_g – crest level over the bottom before the weir [L] p_d – crest level over the bottom behind the weir [L]

Physical experiment

 $s = 0.001745 \qquad Q = 0.0133 \text{ m}^3 / \text{s}$ $n = 0.0185 \text{ s} / \text{m}^{1/3} \qquad h_0 = 1.31 \text{ m}$ $p_g = p_d = 0.24 \text{ m} \qquad h_L = 1.26 \text{ m}$

Physical experiment

Measurement vs. computation output

Channel networks

Channel network junctions

Numerical experiment

Channel network properties

No.	s [-]	<i>L</i> [m]
1	0.0001	2000
2	0.0001	1000
3	0.0001	1000
4	0.0001	1500
5	0.0001333	1500
6	0.0001	1500
7	0.0001333	1500
8	0.0001	1500
9	- 0.00005	1000
10	- 0.00005	1000
11	0.0002	1000

weir properties

$$B_{wr} = 5 \text{ m}$$

$$p_{g,wr} = p_{d,wr} = 1 \mathrm{m}$$

orfice properties $B_{orf} = 2.5 \,\mathrm{m}$ $D_{orf} = 0.3 \,\mathrm{m}$

$$\mu_{orf} = 0.67$$

 $B_{ch} = 5 \text{ m}$ $n_{ch} = 0.03 \text{ s/m}^{1/3}$

Computations outcome

No.	Q [m³/s]
1	5.502
2	2.751
3	2.751
4	1.087
5	2.207
6	1.477
7	2.207
8	1.477
9	0.730
10	0.730
11	2.547

GDAŃSK UNIVERSITY OF TECHNOLOGY

HISTORY IS WISDOM FUTURE IS CHALLENGE