

Numerical modeling of water and ice dynamics for analysis of flow around the Kiezmark bridge piers

Civil and Environmental Engineering Michał Szydłowski, Tomasz Kolerski May 2017

Aim of the study

How the results obtained from a mathematical model can support decisionmaking when designing hydrotechnical objects

Bridge is planned in km 930+010 of the Vistula River (express road from Gdansk to Warsaw)

12 spans supported on piers

Main span over the Vistula River (130 m)

Located over the waterway

source: GDDKiA

Hydrodynamic calculation Two–dimensional shallow water equations (SWE) model

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \mathbf{S} = 0,$$

$$\mathbf{U} = \begin{pmatrix} h \\ uh \\ vh \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} 0 \\ -gh(S_{ox} - S_{fx}) \\ -gh(S_{oy} - S_{fy}) \end{pmatrix}, \quad \mathbf{E} = \begin{pmatrix} uh \\ u^2h + 0.5gh^2 \\ uvh \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} vh \\ uvh \\ v^2h + 0.5gh^2 \end{pmatrix},$$

h = water depth,

u v = horizontal components of the velocity,

 $S_{ox} S_{oy} = \text{bed slope terms},$

 $S_{fx} S_{fy}$ = hydraulic slopes defined using Manning formula,

g = acceleration due to gravity

integration in space \rightarrow finite volume method integration in time \rightarrow explicit two step finite difference scheme

Bridge pier under construction cofferdam (June 2016)

Bridge pier under construction concrete works (November 2016)

100-year flow $(Q_{1\%})$ with cofferdams Water surface elevation [m]

100-year flow (Q_{1%}) with cofferdams Water velocity distribution

100-year flow (Q_{1%}) with cofferdams Water velocity magnitude [m/s]

River bathymetry (prior to the bridge construction)

River bathymetry (measured: December 2016)

Bed erosion [m]

River ice dynamics

DynaRICE model

$$M_L \frac{d\vec{V}_L}{dt} = \vec{R} + \vec{F}_a + \vec{F}_w + \vec{G}$$

 M_L = unity mass (per area) of ice particle,

 \vec{V}_L = ice velocity vector,

$$\vec{R}$$
 = ice internal resistance force,

$$\vec{F}_a =$$
wind drag,

$$\vec{F}_w =$$
 water drag,

 \vec{G} = gravity force.

Solved by SPH method with method of images implemented to the land boundaries

Force balance

$$\sum F_x = -\sigma_{xx} N\eta dy - \sigma_{yx} N\eta dx + XN\eta dl + \frac{1}{2}\tau_{wx} Ndxdy + \frac{1}{2}\tau_{ax} Ndxdy + \frac{1}{2}\rho N \frac{dh}{dx} dxdy = 0$$

$$\sum F_{y} = -\sigma_{yy} N\eta dx - \sigma_{xy} N\eta dy + YN\eta dl + \frac{1}{2}\tau_{wy} Ndxdy + \frac{1}{2}\tau_{ay} Ndxdy + \frac{1}{2}\rho N \frac{dh}{dy} dxdy = 0$$

X, Y = components of the ice load on the structure; $\eta =$ thickness of ice,

N = ice concentration;

 au_{ax} , au_{ay} = components of wind drag;

 τ_{wx} , τ_{wy} = components of water drag;

 σ_{xx} , σ_{yy} and $\sigma_{xy} = \sigma_{yx}$ internal ice stresses

 $\sigma_{n} = \sigma_{xx} \left(\frac{dy}{dl}\right)^{2} + \sigma_{yy} \left(\frac{dx}{dl}\right)^{2} + \sigma_{yx} \frac{dx}{dl} \frac{dy}{dl}$ $\sigma_{t} = \left(\sigma_{xx} - \sigma_{yy}\right) \frac{dx}{dl} \frac{dy}{dl} + \sigma_{yx} \left[\left(\frac{dy}{dl}\right)^{2} + \left(\frac{dx}{dl}\right)^{2} \right]$

$$F_n = \sigma_n N\eta$$
$$F_t = \sigma_t N\eta$$

Ice thickness and ice loads Low flow condition Q=411 cms

Ice thickness and ice loads Average flow condition Q=1046 cms

Ice condition on January 30th, 2017 west pier under construction

Courtesy: M. Naskręt, trojmiasto.pl

- Mathematical models are precise tools to predict possible conditions that may occur in a future structure operation.
- Results of numerical modeling was used to assess the effect of bridge piers on hydrodynamic and ice transport. The ice load on the piers was also determined
- Even though numerical modeling is generally accepted and defined as a best practice in bridge design, there is shortage of such activity in Poland.
- Insufficient structure to environment interaction analysis may lead to variety of dangerous situations including stability problems, river degradation, increased flood risk and other environmental issues.