Experimental betap			, tertiforned Briterius
XXXVI INTERNATIONAL SCHO	ol of Hydraul	ICS - 23^{RD} - 26^{TH} Ma	Y 2017
LDV MEASUREMENTS	OF THE FLO	OW INDUCED BY	Y AN
ELONGATED BRIDGE	PIER: THE	FIXED BED CAS	Е

Maria Manuela C L Lima¹, Elsa Carvalho², Rui Aleixo³

¹Escola de Engenharia da Universidade do Minho Campus de Azurém, Portugal ²Faculdade de Engenharia da Universidade do Porto, Portugal ³DICAM - Fluid Dynamics Unit, University of Bologna, Italy

University of Minho School of Engineering

Experimental Setup	Conclusions	Acknowledgments

2 Experimental Setup

3 Results

4 Conclusions

5 Acknowledgments

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆ 国 ▼ 今 Q @

Bridge Hintze Ribeiro, Entre os Rios, Portugal. (1887 - 2001)

- Pier collapsed March, 4th 2001
- 59 people killed (1 bus, 3 cars)

Bridge Hintze Ribeiro, Entre os Rios, Portugal. (1887 - 2001)

- Non-circular piers
- How is the flow around such structures?
- Not many studies available in the literature.

Introduction	Experimental Setup	Conclusions	Acknowledgments

Objectives: Elongated bridge pier

- Flow characterization by means of Laser Doppler Velocimetry
- Detail analysis of flow
- First of three cases
 - Fixed bed
 - Non-cohesive bed
 - Cohesive bed

Introduction	Experimental Setup	Conclusions	Acknowledgments

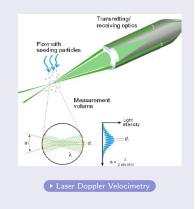
What will be presented here

- Elongated bridge pier on a fixed bed.
- Laser Doppler Velocimetry measurements:
 - Upstream/Downstream.
 - Quadrants method application.
 - Vortex ejection.

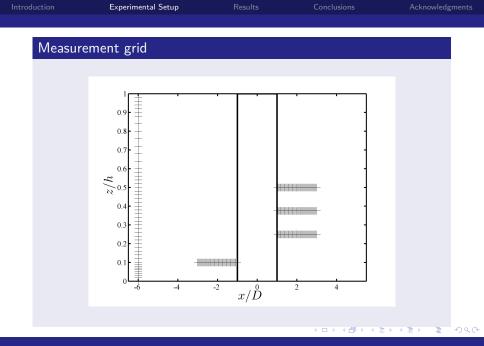
Introduction	E×perimental Setup	Results	Conclusions	Acknowledgments
Pier Mo D = D ₁ =	4 cm			Acknowledgments $\frac{1 x/D}{4 cm} = 4 \ cm$ $= 8 \ cm$
			Flow z/h	x/D
			< 四> < 图> < 图> <	।≣► ≣ - १९(

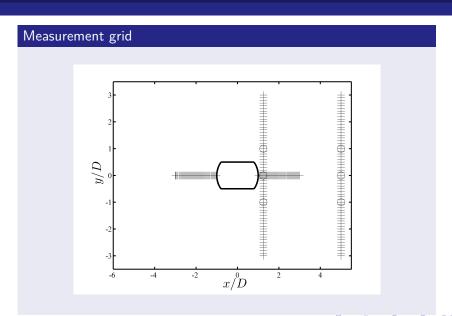
				Acknowledgine	
Channel:					
Width =	= 0.40 m	- 1		-	
			and the second s	and the second se	

- Height = 0.50 m
- Length = 17 m



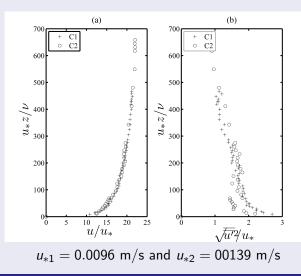
Experimental Setup

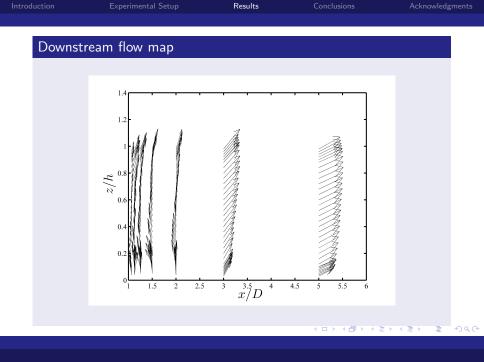

	Experimental Setup		Conclusions	Acknowledgment
Laser [Doppler Velocimetry:	DANTEC B	SA F60 Flow	


- 2 Components
 - $\lambda_1 = 514$ nm
 - $\lambda_2 = 488 \text{ nm}$
- *f_s* = 40 MHz
- $DR \approx 100 \text{ Hz}$
- Each point: 2¹⁵ = 32768 particles
- Control volume dimensions
 - $\delta_{x,1} = 2.825 \text{ mm}$
 - $\delta_{x,2} = 2.679 \text{ mm}$
 - $\delta_{z,1} = 0.08 \text{ mm}$ $\delta_{z,2} = 0.079 \text{ mm}$
- Measurement of turbulence

	Experimental Setup		Conclusions	Acknowledgments
1				
Flow co	onditions			
		1		

Condition	$Q(m^3s^{-1})$	$U(ms^{-1})$	<i>h</i> (m)	Fr	Rep
C1	0.0034	0.17	0.05	0.24	5822
C2	0.005	0.25	0.05	0.36	8733

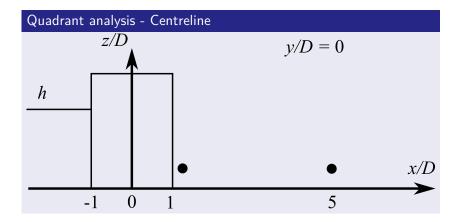




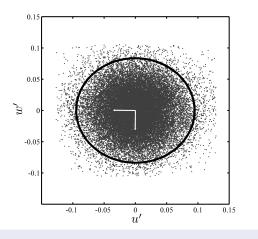
Experimental Setup

◆□ ▶ ◆□ ▶ ★ ヨ ▶ ★ ヨ ▶ ● ヨ ● のへで

Upstream boundary conditions x/D = -6

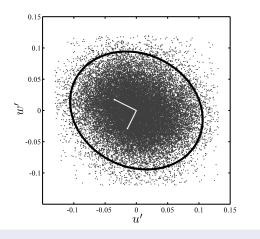

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	। । । । । । । । । । । । । । । । । । ।

Experimental Setup	Results	Conclusions	Acknowledgments


Quadrant analysis

- Plot the velocity fluctuations in a 4-Q cartesian plot [5].
- Quantify the contribution of each quadrant to Reynolds Stresses $|\overline{u'w'}|$
- Each quadrant associated with an event
 - **1** Quadrant u' > 0 and v' > 0: outward interactions.
 - **2** Quadrant u' < 0 and v' > 0: ejection events.
 - **3** Quadrant u' < 0 and v' < 0: inward interactions.
 - 4 Quadrant u' > 0 and v' < 0: sweep interactions.

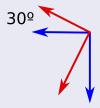
Experimental Setup	Results	Conclusions	Acknowledgments


Quadrant analysis C2: x/D = 1.25, y/D = 0, z/h = 0.25

<ロ> <回> <回> < 三> < 三> < 三</p>

Acknowledgments

Quadrant analysis C2: x/D = 5, y/D = 0, z/h = 0.25

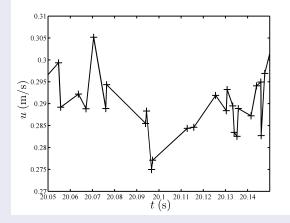


<ロ> <回> <回> <三> <三> <三> <三</p>

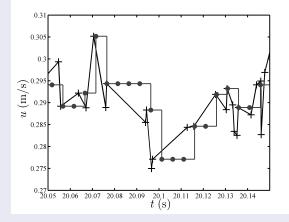
Experimental Setup	Results	Conclusions	Acknowledgments

Quadrant analysis C2 x/D = 1.25, y/D = 0, z/h = 0.25

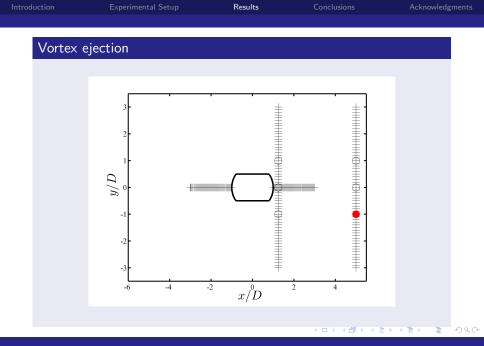
- Circular distribution of fluctuations
- Elliptical distribution: 2nd and 4th quadrants (ejections and sweeps)

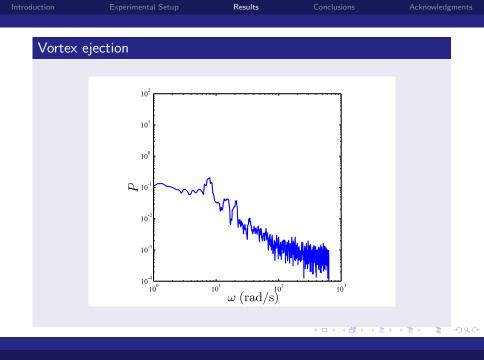

Vortex ejection

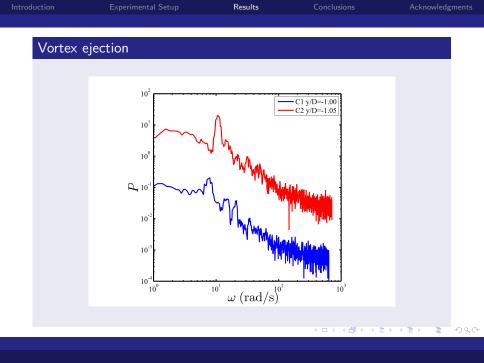
Flow Past a Cylinder at Re=10000


[http://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm]

LDV data needs to be structured: Sample & Hold Method



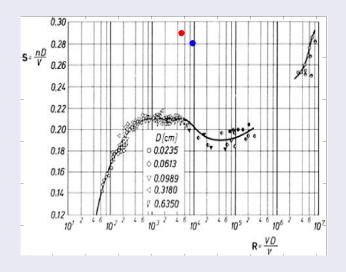

Matlab toolbox developed for LDV data processing [1].


LDV data needs to be structured: Sample & Hold Method

Matlab toolbox developed for LDV data processing [1].

Experimental Setup	Results	Conclusions	Acknowledgments

Vortex ejection


Cond.	$\omega=2\pi f$ (rad/s)	<i>f</i> (Hz)	St = Df/U	Re
C1	7.901	1.25		5822
C2	10.93	1.74		8733

Vortex ejection

590

Vortex ejection

590

Experimental Setup	Results	Conclusions	Acknowledgments

From the literature

Ozgoren [3]:

- circular cylinders St \approx 0.21.
- rectangular cylinders $0.120 \leq St \leq 0.134$.

```
Price et al. [4]:
```

• circular cylinders St = 0.4 for Re = 2000 (plane wall).

Kirkil et al. [2] Vertical mounted cylinders:

- rectangular cylinders St = 0.18.
- circular cylinders St = 0.27.

	Experimental Setup	Results	Conclusions	Acknowledgments
Conclu	sions			

- Downstream of the pier the flow is essentially vertical, and the mean clockwise circulation until $x/D \approx 2.5$
- Along the centreline
 - for x/D = 1.25 the fluctuation cloud is essential circular.
 - for x/D = 5 the fluctuation cloud is an ellipse along the 4th and 2nd quadrants, the event direction (burst) is approximately equal to 30° .
- Vortex ejection frequencies of 1.25 Hz and 1.74 Hz were identified, leading to Strouhal numbers of 0.29 and 0.28 respectively. These values (St) are higher than the ones obtained for infinite cylinders, and about the same order of magnitude as the ones measured for cylinders near a solid boundary.

Introduction	Experimental Setup	Results	Conclusions	Acknowledgments
	1.1 .1 .1 .1			– · ·

M.M.C.L. Lima thanks the Hydraulics Division of the Civil Engineering Department of the Faculty of Engineering of the University of Porto for the access to the facilities and equipment during her sabbatical leave.

To the late Prof. Maria Fernanda Proen ca, head of the Hydraulics laboratory of FEUP.

R. Aleixo thanks to the INFRASAFE Project.

(4回) 4 回) 4 回)

3

	Experimental Setup	Conclusions	Acknowledgments
References	1		
	leixo, E. Carvalho, albox for laser Don		rocessing

A toolbox for laser Doppler velocimetry data post-processing. In G. Constantinescu, Marcelo Garcia, and Dan Hanes, editors, *Proceedings of the RiverFlow 2016 Conference*, 2016.

G. Kirkil and G. Constantinescu. Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion.

Water Resources Researc, 45:W01642, 2009.

	Experimental Setup	Conclusions	Acknowledgments
Referenc	es II		

M. Ozgoren.

Flow structure in the downstream of square and circular cylinders.

Flow Measurement and Instrumentation, 17:225–235, 2006.

S.J. Price, D. Sumer, J.G. Smith, K. Leong, and M.P. Païdoussis.

Flow visualization around a circular cylinder near to a plane wall.

Journal of Fluids and Structures, 16 (2):175–191, 2002.

W. Willmarth and S. Lu.

Structure of the reynolds stress near the wall. Journal of Fluid Mechanics, 55 (1):65–92., 1972.

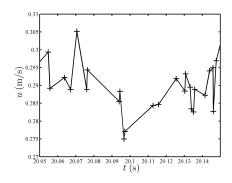
Experimental Setup	Conclusions	Acknowledgments

Thank you for your attention.

To contact the authors:

- Maria Manuela C. L. Lima: mmlima@civil.uminho.pt
- Elsa Carvalho: elsac@fe.up.pt
- Rui Aleixo: rui.aleixo@unibo.it

Experimental Setup	Conclusions	Acknowledgments


▲□▶ ▲圖▶ ▲重▶ ▲重▶ 二重 - 釣A⊙

Laser Doppler Velocimetry Advantages

Non-intrusive.

- No calibration needed.
- High spatial and time resolution.
- True measurement of each component.
- 1C, 2C and 3C are possible.

Disadvantages

- Stochastic data-rate.
- Point-wise.

▶ Get back!

E×perimental Setup	Conclusions	Acknowledgments

Laser Doppler Velocimetry

R. Ferreira, R. Aleixo (2017). Laser Doppler Velocimetry/Anemometry. Experimental Hydraulics: Methods, Instrumentation, Data Processing and Management, 2 volume set, volume 2: Instrumentation and Measurement Techniques; edited by M. Muste, J. Aberle, D. Admiraal, R. Ettema, M. H. Garcia, D. Lyn, V. Nikora, C. Rennie. Taylor and Francis. ISBN: 978-1-138-03815-8 (to be published by Taylor & Francis in July 2017).

Don't forget

W.A.T.E.R. Summer School: W.A.T.E.R.

▶ Get back!

イロト イヨト イヨト イヨト

э.