

- O Methods
- O Results
- Conclusions

Spatial distribution of dissolved oxygen at rapid hydraulic

structures as an indicator of local-scale processes

Agnieszka Rajwa-Kuligiewicz 1

Karol Plesiński ²

John Russell Manson 3

Artur Radecki-Pawlik²⁴

Paweł M. Rowiński 1

¹Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
²University of Agriculture, Krakow, Poland
³Stockton University, Galloway, USA
⁴Podhale State College of Applied Sciences, Nowy Targ, Poland

- O Methods
- Results
- Conclusions

Pool

XXXVI International School of Hydraulics

Riffle

Pool

Rapid

Rapid Hydraulic Structure (RHS)

Pool-Riffle Stream

Pool

Rapid

Riffle

Examine the impact of RHS morphology and flow patterns on the distribution of dissolved oxygen and water temperature

- RHS Intro
- $^{\circ}$ Methods
- ^O Results
- Conclusions

Fig. 1 Study site – Porębianka Stream

- RHS Intro
- Methods
- Results
- Conclusions

Fig. 2 Study reach with the distribution of measurement points.

Shear velocity
$$U^* = \frac{a}{5.75} (m \cdot s^{-1})$$
 $a - \text{slope of a straight line } (y = ah + b)$
 $h - \text{height above the river bed where the velocity}measurement was performed $b - \text{equation free term}$
 $\rho - \text{water density } (1000 \text{ kg·m}^{-3})$ Reynolds number $Re = \frac{V_{av} \cdot h}{v}$ V_{av} - depth averaged velocity $(m \cdot s^{-1})$
 $v - \text{kinematic viscosity } (m^2 \cdot s^{-1})$ Froude number $Fr = \frac{V_{av}}{\sqrt{gh}}$ $h - \text{water depth } (m)$
 $g - \text{gravitational acceleration } (m \cdot s^{-2})$$

- RHS Intro
- ^O Methods
- Results
- Conclusions

Fig. 3 The bathymetry of hydraulic structure ($Q=1.6 \text{ m}^3 \cdot \text{s}^{-1}$) with DO concentrations data (A) and water temperature data (B).

- ^O Methods
- Results
- Conclusions

Fig. 4 Contour maps of dissolved oxygen concentration (A) and water temperature (B). Arrows represent the depth averaged velocity at individual measurement points.

- RHS Intro
- ^O Methods
- Results
- Conclusions

Fig. 5 Hydraulic characteristics along the structure: (A) shear velocity, (B) shear stress, (C) local Froude number.

- ^O Methods
- Results
- Conclusions

Fig. 6 Contour maps of dissolved oxygen concentration (A) and water temperature (B). Arrows represent the shear velocity at individual measurement points.

- ^O Methods
- Results
- Conclusions

Fig. 7 Contour maps of dissolved oxygen concentration (A) and water temperature (B). Dots represent the shear stress at individual measurement points.

- ^O Methods
- Results
- Conclusions

Fig. 8 Contour map of dissolved oxygen concentration. Dots represent Froude number at individual measurement points.

Fig. 8 Contour map of dissolved oxygen concentration. Dots represent Reynolds number at individual measurement points.

- RHS Intro
- O Methods
- Results
- Conclusions

Fig. 9 Boxplots: (A) dissolved oxygen concentration, (B) water temperature.

- RHS Intro
- ^O Methods
- Results
- Conclusions

Fig. 10 Scatter plot of DO and water temperature.

Fig. 11 Scatter plot of DO deficit at individual measurement points.

- O Methods
- O Results
- Conclusions

- RHS are characterised by great spatial heterogeneity of oxygen and thermal conditions;
- Distribution of dissolved oxygen and water temperature is strongly associated with flow paths and morphological features of the structure:
 - the highest concentrations of oxygen occur in pools,
 - the lowest DO concentrations occur in pore spaces at the rapid ramp;

□ The study of site-specific characteristics might help to understand multi-scale processes in rivers and improve restoration practices in mountain streams.

- Methods
- Results
- Conclusions

Thank you for your attention