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OUTLINE



• To investigate how deflectors impact on sediment 
transport processes

INTRODUCTION

Aim of the study

Motivation

• Deflectors are popular structures used in river restoration

• Utility of modeling in prediction of changes within the 
channel

• Verification of changes in flood risk caused by the river 
restoration



STUDY AREA (1)

Flinta River

province:  Wielkopolska

tributary of the Wełna River 
(outlet in Rożnowo-Młyn)

total length 27 km

source in the Nature Reserve 
„Źródliska Flinty”

catchment area : 345 km2 

water gauge:  Ryczywół

Fig. 1 Location of the Flinta River.



STUDY AREA (2)

Flinta River

catchment area to analyzed 
cross-section : 251 km2

analyzed reach 2 km

sandy lowland stream (WFD 
typology)

slope 0.75‰

velocity 0.2 m/s

Fig. 2 Analysed reach of the Flinta River.
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Fig. 5 A daily flow hydrograph for period 1951-2015
for water gauge Ryczywół.  

NNQ=0.01 m3/s

WWQ=7.28 m3/s
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Fig. 6 Digital elevation model in the analysed area.
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Fig. 6 Digital maps used in analysis (geoportal.gov.pl).



Aquired data
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Fig. 7 Cross-sections of the Flinta River obtained from 
BIPROWODMEL company.
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Fig. 8 Sieve curve of the sediment samples collected in 
the Flinta River.



Pre–processing of data

METHODS (1)

Simulation model

Analysys of the results

development of geometries (by spatial
analysis tools and geometry tools in HEC-RAS)

quasi-unsteady flow, sediment transport, 
steady flow

Mean, max and min changes of bottom
elevations for both geometries, water surface

elevation Fig. 9 Tools used to the analysis.



Deflectors

METHODS (1)

Fig. 10 Scheme of deflector.
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RESULTS (1)

Cross-section
[m] 

Differences between variants [m]

I - II II - III I – III

41 0.17 0.05 0.11

712 0.03 0.04 0.07

760 0.04 0.04 0.08

936 0.02 0.04 0.06

Tab. 3 Maximum differences in water surface elevation after 
calculations for three variants of Manning’s coefficient. 



RESULTS (2)
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Fig. 11 Changes in bottom elevation after simulations for geometry with and 
without deflectors calculated assuming the Engelund-Hansen formula.



RESULTS (2)

Fig. 12 Changes in bottom elevation after simulations for geometry with and 
without deflectors calculated assuming the Engelund-Hansen formula.

54,0

54,5

55,0

55,5

56,0

56,5

57,0

57,5

58,0

700 720 740 760 780 800 820 840 860

El
ev

at
io

n
 [

m
 a

.s
.l.

]

Distance [m]

Initial bottom elevation

Predicted bottom elevation for geometry without deflectors

Predicted bottom elevation for geometry with deflectors



RESULTS (3)
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Fig. 13 Mean amount of transported sediments for variants without 
deflectors and with deflectors. 



• In the location of deflectors increased slope and depth may
caused erosion

• Deflctors may accelerate (?) water flow what led to less 
erosion (?) in comparison with geometry without structures. 

• Cascade bed profile may led to discussion about abundance of 
cross sections and distance between each other what is
significant from the point of view of attempts to model 
unusual structers in 1D models. 

• To getting more information about deflector’s impact, the 
presented research should be tested with other formulas for 
intensity of sediment transport and confronted with 
observations in nature.

CONCLUSIONS
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RÓWNANIA MODELU SYMULACYJNEGO (1)

Quasi – unsteady flow
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Fig. 14 A Quasi-Unsteady Flow Series with time step (Brunner 2016).
. 



RÓWNANIA MODELU SYMULACYJNEGO (2)

Engelunda – Hansena forumla

 
𝑁 𝑠𝑒𝑑  
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